Developments of nanoparticle reinforced plastics are of growing interest towards the emergence of new materials which enhance optimal utilization of natural resources and particularly of renewable resources. The effects of nanoparticles as fillers in glass-epoxy composite systems on the mechanical and tribological properties have been discussed in this article. The mechanical properties such as tensile strength, impact strength, flexural strength, and hardness have been studied in accordance with ASTM standards. The composites employed in the study have been fabricated using hand lay-up technique. By varying notch radius impact strength is studied. The clay and silica used in the present system were treated with 3-aminopropyltriethoxysilane. The effect of variants in sliding speed, time and applied load on the wear behavior of polymer nanocomposites is studied by measuring the weight changes and observing the surface features using scanning electron microscope. In the experiments with wear test pin having flat face in contact with hardening rotating steel disc, sliding speed, time and loads in the range of 640-1000 RPM, 300-900 s and 5-25 N respectively was used. It is observed that wear rate increases with increasing applied load, time and sliding speeds.
The wear performance of jute/coir unsaturated polyester composites, filled with eggshell powder (ESP) and nanoclay (NC), were examined, concentrating on two measured parameters, coefficient of friction (COF) and wear rate (WR). To assess the possibilities of this material, a Taguchi study, based on grey relational analysis (GRA), was carried out, based on three testing parameters of the wear performance, load (10, 20, and 30 N), speed (100, 150, and 200 rpm), and sliding distance (30, 40, and 50 m). The material showed promising characteristics especially at high load, low speed, and high sliding distance. When comparing the respective influence of the three different parameters, the speed proved to be the most critical, this suggested the possible application of the biocomposite only for very low values of it. On the other hand, it was also elucidated that the presence and interfacial adhesion of the two fillers considerably hindered the formation of ploughing during wear test, despite the fact that degradation might be continuous and critical as far as loading progresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.