1. Hypoxic chemotransmission in the rat carotid body (CB) is mediated in part by ATP acting on suramin-sensitive P2X purinoceptors. Here, we use RT-PCR, cloning and sequencing techniques to show P2X2 and P2X3 receptor expression in petrosal neurones, some of which develop functional chemosensory units with CB receptor clusters in co-culture. 2. Single-cell RT-PCR revealed that hypoxia-responsive neurones, identified electrophysiologically in co-culture, expressed both P2X2 and P2X3 mRNA. 3. Isohydric hypercapnia (10 % CO(2); pH 7.4) caused excitation of chemosensory units in co-culture. This excitation depended on chemical transmission, with ATP acting as a co-transmitter, since it was inhibited by reduction of the extracellular Ca(2+):Mg(2+) ratio and by the purinoceptor blocker suramin (50-100 microM). 4. Hypoxia and isohydric hypercapnia could separately excite the same chemosensory unit, and together the two stimuli interacted synergistically. 5. Using confocal immunofluorescence, co-localization of P2X2 and P2X3 protein was demonstrated in many petrosal somas and CB afferent terminals in situ. Taken together, these data indicate that ATP and P2X2-P2X3 purinoceptors play important roles in the peripheral control of respiration by carotid body chemoreceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.