Catchment scale conceptual hydrological models apply calibration parameters entirely based on observed historical data in the climate change impact assessment. The study used the most advanced machine learning algorithms based on Ensemble Regression and Random Forest models to develop dynamically calibrated factors which can form as a basis for the analysis of hydrological responses under climate change. The Random Forest algorithm was identified as a robust method to model the calibration factors with limited data for training and testing with precipitation, evapotranspiration and uncalibrated runoff based on various performance measures. The developed model was further used to study the runoff response under climate change variability of precipitation and temperatures. A statistical downscaling model based on K-means clustering, Classification and Regression Trees and Support Vector Regression was used to develop the precipitation and temperature projections based on MIROC GCM outputs with the RCP 4.5 scenario. The proposed modelling framework has been demonstrated on a semi-arid river basin of peninsular India, Krishna River Basin (KRB). The basin outlet runoff was predicted to decrease (13.26%) for future scenarios under climate change due to an increase in temperature (0.6 °C) compared to a precipitation increase (13.12%) resulting in an overall reduction in water availability over KRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.