In recent years, feature selection has emerged as a major challenge in machine learning. In this paper, considering the promising performance of metaheuristics on different types of applications, six physics-inspired metaphor algorithms are employed for this problem. To evaluate the capability of dimensionality reduction in these algorithms, six diverse-natured datasets are used. The performance is compared in terms of the average number of features selected (AFS), accuracy, fitness, convergence capabilities, and computational cost. It is found through experiments that the accuracy and fitness of the Equilibrium Optimizer (EO) are comparatively better than the others. Finally, the average rank from the perspective of average fitness, average accuracy, and AFS shows that EO outperforms all other algorithms.
Purpose: During the current pandemic scientists, researchers, and health professionals across the globe are in search of new technological methods for tackling COVID-19. The magnificent performance reported by machine learning and deep learning methods in the previous epidemic has encouraged researchers to develop systems with these methods to diagnose COVID-19. Methods: In this paper, an ensemble-based multi-level voting model is proposed to diagnose COVID-19 from chest x-rays. The multi-level voting model proposed in this paper is built using four machine learning algorithms namely Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM) with a linear kernel, and K-Nearest Neighbor (KNN). These algorithms are trained with features extracted using the ResNet50 deep learning model before merging them to form the voting model. In this work, voting is performed at two levels, at level 1 these four algorithms are grouped into 2 sets consisting of two algorithms each (set 1 — SVM with linear kernel and LR and set 2 — RF and KNN) and intra set hard voting is performed. At level 2 these two sets are merged using hard voting to form the proposed model. Results: The proposed multilevel voting model outperformed all the machine learning algorithms, pre-trained models, and other proposed works with an accuracy of 100% and specificity of 100%. Conclusion: The proposed model helps for the faster diagnosis of COVID-19 across the globe.
Introduction: Pap smear is considered to be the primary examination for the diagnosis of cervical cancer. But the analysis of pap smear slides is a time-consuming task and tedious as it requires manual intervention. The diagnostic efficiency depends on the medical expertise of the pathologist, and human error often hinders the diagnosis. Automated segmentation and classification of cervical nuclei will help diagnose cervical cancer in earlier stages. Materials and Methods: The proposed methodology includes three models: a Residual-Squeeze-and-Excitation-module based segmentation model, a fusion-based feature extraction model, and a Multi-layer Perceptron classification model. In the fusion-based feature extraction model, three sets of deep features are extracted from these segmented nuclei using the pre-trained and fine-tuned VGG19, VGG-F, and CaffeNet models, and two hand-crafted descriptors, Bag-of-Features and Linear-Binary-Patterns, are extracted for each image. For this work, Herlev, SIPaKMeD, and ISBI2014 datasets are used for evaluation. The Herlev datasetis used for evaluating both segmentation and classification models. Whereas the SIPaKMeD and ISBI2014 are used for evaluating the classification model, and the segmentation model respectively. Results: The segmentation network enhanced the precision and ZSI by 2.04%, and 2.00% on the Herlev dataset, and the precision and recall by 0.68%, and 2.59% on the ISBI2014 dataset. The classification approach enhanced the accuracy, recall, and specificity by 0.59%, 0.47%, and 1.15% on the Herlev dataset, and by 0.02%, 0.15%, and 0.22% on the SIPaKMed dataset. Conclusion: The experiments demonstrate that the proposed work achieves promising performance on segmentation and classification in cervical cytopathology cell images..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.