A B S T R A C TTrue amplitude migration is one of the most important procedures of seismic data processing. As a rule it is based on the decomposition of the velocity model of the medium into a known macrovelocity component and its sharp local perturbations to be determined. Under this decomposition the wavefield can be considered as the superposition of an incident and reflected/scattered waves. The single scattering approximation introduces the linear integral operator that connects the sharp local perturbations of the macrovelocity model with the multishot/multioffset data formed from reflected/scattered waves. We develop the pseudoinverse of this operator using the Gaussian beam based decomposition of acoustic Green's functions. The computation of this pseudoinverse operator is done pointwise by shooting Gaussian beams from the target area towards the acquisition system.The numerical implementation of the pseudoinverse operator was applied to the synthetic data Sigsbee2A. The results obtained demonstrate the high quality of the true amplitude images computed both in the smooth part of the model and under the salt body.
We develop the true‐amplitude prestack migration of multicomponent data based on the use of elastic Gaussian beams for walkaway vertical seismic profile (VSP) acquisition systems. It consists in a weighted summation of multishot data with specific weights, computed by tracing elastic Gaussian beams from each imaging point of the target area towards the sources and receivers. Each pair of beams may be connected with either a pair of P‐rays (PP‐image) or the P‐ray towards sources and the S‐ray to receivers (PS‐image) and is uniquely determined by dip (the angle of the bisector between the rays and the vertical direction) and opening (the angle between the rays) angles. Shooting from the bottom towards the acquisition system helps to avoid well‐known troubles, in particular multipathing for the imaging conditions in complex velocity models. The ability to fix the dip angle and implement summation over opening angles leads to the so‐called selective images that contain mostly interfaces with desired slopes. On the other hand, a set of images computed for a range of opening angles by summation over all available dip angles is used as input of an AVO‐like inversion procedure for the recovery of elastic parameters. The feasibility of this imaging procedure is verified by synthetic data for 2D realistic elastic models.
A B S T R A C TLocalization of fractured areas is of primary interest in the study of oil and gas geology in carbonate environments. Hydrocarbon reservoirs in these environments are embedded within an impenetrable rock matrix but possess a rich system of various microheterogeneities, i.e., cavities, cracks, and fractures. Cavities accumulate oil, but its flow is governed by a system of fractures. A distinctive feature of wave propagation in such media is the excitation of the scattered/diffracted waves by the microheterogeneities. This scattering could be a reliable attribute for characterization of the fine structure of reservoirs, but it has extremely low energy and any standard data processing renders them practically invisible in comparison with images produced by specular reflections. Therefore, any attempts to use these waves for image congestion of microheterogeneities should first have a preliminary separation of the scattering and specular reflections. In this paper, the approach to performing this separation is based on the asymmetric summation. It is implemented by double focusing of Gaussian beams. To do this, the special weights are computed by propagating Gaussian beams from the target area towards the acquisition system separately for sources and receivers. The different mutual positioning of beams in each pair introduces a variety of selective images that are destined to represent some selected singular primitives of the target objects such as fractures, cavities, and edges. In this way, one can construct various wave images of a target reservoir, particularly in scattered/diffracted waves. Additional removal of remnants of specular reflections is done by means of spectral analysis of the scattered/diffracted waves' images to recognize and cancel extended lineaments. Numerical experiments with Sigsbee 2A synthetic seismic data and some typical structures of the Yurubcheno-Tokhomskoye oil field in East Siberia are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.