Litter size affects profitability in the swine industry. Mammalian ovaries play important roles during reproduction, including ovulation and hormone secretion, which are tightly regulated by specific microRNAs (miRNAs). In this study, we investigated the effects of specific miRNAs on porcine litter size. We compared the ovarian miRNAs of Yorkshire pigs with high (YH) and low (YL) litter sizes using Solexa sequencing technology. We identified 327 and 320 miRNAs in the ovaries of YH and YL pigs respectively. A total of 297 miRNAs were co-expressed; 30 and 23 miRNAs respectively were specifically expressed in the two libraries. A total of 83 novel miRNAs were predicted; 37 specific miRNAs were obtained, of which 21 miRNAs were upregulated and 16 miRNAs were downregulated in YH compared with YL. Additionally, 19 628 and 19 250 target genes were predicted in the two libraries respectively. The results revealed that specific miRNAs (i.e., miR-224, miR-99a, let-7c, miR-181c, miR-214 and miR-21) may affect porcine litter size. The results of this study will help in gaining understanding of the role of miRNAs in porcine litter size regulation.
Some polymorphisms of the human CETP gene are causally and significantly associated with serum lipids levels; however, the information regarding this gene in pigs is sparse. To evaluate the effects of CETP on blood lipid traits and fat deposition in pig, porcine CETP tissue expression patterns were observed by quantitative real-time polymerase chain reaction (qPCR) first. High expression was detected in liver, spleen, gluteus medius (GM) muscle and backfat. A de novo polymorphism (AF333037:g.795C>T) in the intron 1 region of porcine CETP was identified. This polymorphism was further genotyped by direct sequencing of the PCR products of 390 Wannan Black pigs, a Chinese native breed population. Association analyses at 45 and 300 days of age revealed highly significant associations between CETP genotypes and serum lipid traits. Furthermore, this polymorphism was proved to be associated with differences in liver CETP mRNA levels: pigs at 300 days of age with the TT genotype had higher levels than did those with other genotypes (P = 0.021). Additionally, analysis at 300 days of age showed that GM CETP mRNA expression correlated positively with serum lipids levels as well as with carcass backfat thickness and intramuscular fat content in GM. These results indicate that CETP is involved in serum, adipose and muscle lipid metabolism in pigs. The mechanisms underlying such relationships and their functional implications are worthy of further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.