The Brain Computer Interface (BCI) systems enable unblessed people to operate devices and applications through their mental activities. It is believed that the BCI technology should be a blessing for the unblessed persons who may be suffering from severe neuromuscular disorders. So in this paper, we present a review on the progress of research efforts and then we analyze the challenges in BCI research and development for unblessed people. Here, a general Electro-Encephalogram (EEG) based BCI system is discussed which can assist the paralyzed or physically or mentally challenged people in performing their various routine tasks or applications.
User authentication is a key issue in the security of information systems. Graphical methods for user authentication are gaining importance in view of their distinct advantages over the traditional alphanumeric passwords. A number of Recognition based authentication systems have been proposed in the recent past. They are attractive since humans normally remember pictures better than words. In this paper, we propose a novel recognition-based image authentication system called "Select-to-Spawn" which is secure, robust and convenient to use. The scheme can be easily implemented on computers, hand held devices, mobile phones and ATMs.
Balancing the computational load over multiprocessor networks is an important problem in massively parallel systems. The key advantage of such systems is to allow concurrent execution of workload characterized by computation units known as processes or tasks. The scheduling problem is to maintain a balanced execution of all the tasks among the various available processors (nodes) in a multiprocessor network. This paper studies the scheduling of tasks on a pool of identical nodes which are connected through some interconnection network. A novel dynamic scheduling scheme named as Two Round Scheduling (TRS) scheme has been proposed and implemented for scheduling the load on various multiprocessor interconnection networks. In particular, the performance of the proposed scheme is evaluated for linearly extensible multiprocessor systems, however, a comparison is also made with other standard existing multiprocessor systems. The TRS operates in two steps to make the network fully balanced. The performance of this scheme is evaluated in terms of the performance index called Load Imbalance Factor (LIF), which represents the deviation of load among processors and the balancing time for different types of loads. The comparative simulation study shows that the proposed TRS scheme gives better performance in terms of task scheduling on various linearly extensible multiprocessor networks for both uniform and nonuniform types of loads.
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. In this paper, a new approach for image encryption based on three chaotic logistic maps and multi-pseudo random block permutation has been proposed. This approach is developed to meet the requirements of a secure image transfer. In the proposed image encryption technique, the encryption process has been divided mainly into three steps; the first step is to encrypt the whole image using logistic map, the second step is to divide the image into a random number of blocks, the third step is to generate a random permutation for these blocks.Step two and three will be repeated for a fixed time of iterations. At experimental analysis, the proposed algorithm is compared with other four algorithms. The comparison results show that the proposed algorithm works more efficient than other algorithms. Furthermore, the results of several statistical analysis and key sensitivity tests show that the proposed algorithm provides an effective and secure way for real-time image encryption and transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.