Buffel grass (Cenchrus ciliaris L.) is an important forage grass in arid and semiarid regions. As part of a genetic improvement programme, four genotypes [Biloela (Bl), Americana (Am), Texas (Tx) and Sexual (Sx)] were categorized by tolerance to heat stress in a greenhouse experiment. At 30 d after sowing, half of the plants (control plants) were transferred to growth chambers (28°C day per night), and the other half (pre-treated plants, Prt) were exposed to heat stress treatment (0, 24, 48 and 72 h; 45°C day per night). Malondialdehyde (MDA) content, an indicator of oxidative damage, was determined from foliar samples. During heat stress, Sx showed the earliest increase in MDA (at 24 h) followed by Tx (48 h) and Am and Bl (72 h). Results were compared with heat-stress tolerance evaluated as morphological traits at the end of recuperation (60 d after sowing). Fresh weight and aerial plant height were lowest in the Prt-Sx genotype and highest in Am and Bl genotypes; Tx showed intermediate tolerance. Results suggest that tolerance to heat stress in C. ciliaris genotypes could be related to the capacity for regulating the oxidative damage increase. Foliar MDA content might therefore be used in a genetic improvement programme of C. ciliaris as a potential biochemical indicator for a rapid, simple and low-cost identification of heat-stress tolerant genotypes.
This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.