Dust devils, particle‐loaded vertical convective vortices found on both Earth and Mars, are characterized by high rotating wind speeds, significant electrostatic fields, and reduced pressure and enhanced temperature at their centers. On Earth they are subordinate to boundary layer winds in the dust cycle and, except possibly in arid regions, are only “nuisance‐level” phenomena. On Mars, though, they seem to support the persistent background atmospheric haze, to influence the surface albedo through the formation of “tracks” on the surface, and to possibly endanger future exploration because of their high dust load and large potential gradients. High‐resolution numerical simulations and thermophysical scaling models successfully describe dust devil–like vortices on Mars, but fitting dust devil action into the Martian global dust cycle is still problematic. Reliable parameterizations of their erosional abilities and solid temporal and spatial distribution data are still required to build and test a complete model of dust devil action.
Aeolian processes are probably the dominant ongoing surface process on Mars; Large Dark Dunes (LDDs), particularly common aeolian landforms, were first recognized in the early 1970s. Recent, higher resolution images have revealed another, morphologically distinct, large population of smaller, ripple-like aeolian bedforms that have been termed "Transverse Aeolian Ridges" (TARs) as it is unknown whether they formed as large ripples or small dunes. We have begun a new study of TARs that examines their distribution, orientation, and morphology using N 10,000 high-resolution Mars Orbiter Camera (1.5 to 8 m/pixel resolution) images in a 45°longitude wide, pole-to-pole survey. The aim of this study is to assess whether TARs are active, to identify possible sediment sources and pathways, and to determine the volumes of sediment that they comprise. We present results from the first half of this study, in which we examine the northern hemisphere, and describe a new three-part classification scheme used to aid the survey. Our results show that TARs are abundant but not ubiquitous: preferentially forming proximal to friable, layered terrains such as those found in Terra Meridiani -the location of the ongoing Mars Exploration Rover "Opportunity" mission. TAR distribution in the northern hemisphere shows a strong latitudinal dependence with very few TARs being found north of ∼ 30°N. We also find that in most cases TARs are less mobile than LDDs, a conclusion possibly explained by Mars Exploration Rover Opportunity observations that show TARlike ripples to have a core of fine material armored by a monolayer of granule-sized particles. This could disallow significant bedform movement under the current wind regime. That TARs are essentially inactive is confirmed by superposition relations with slope streaks and LDDs and by observations of superposed impact craters. We suggest that observations made by the Opportunity Rover in Terra Meridiani indicate that the small aeolian bedforms common here are ripples and not small dunes. Farther south, these bedforms transition into larger features indistinguishable from TARs, suggesting that TARs (in the Meridiani area at least) are ripples and not dunes.
The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the “Rosalind Franklin” rover in 2022 for a landing on Mars in goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of ∼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.