Cu-based shape memory alloys belong to one important class of functional alloys, presenting shape memory effect and superelasticity due to their reversible martensitic transformation. Although they have been extensively studied since the middle of the last century, there are still many challenges to be solved. In the last decades, these alloys were extensively studied regarding new compositions, processing routes, phase transformation, mechanical and functional properties. Aspects of the thermoelastic phase transformation have been described using thermodynamic and thermo-mechanical studies, while the role of metallurgical features (such as grain size and morphology, ordering, precipitates and second phases) have been described mainly by phenomenological approach. In this sense this review discusses the advances in the general fundamentals of Cu-based shape memory alloys, the recent developments in processing routes, compositions, and applications in the last years.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.