This paper presents the numerical and experimental investigations of a wavy fin-tube heat exchanger aimed at correctly accounting for all factors influencing the thermal performance of the exchanger. The shape factor for the complex heat conduction path in the wavy fin is determined by using computational analysis and validated experimentally by utilizing electrical analogy to obtain the electric resistance across the fin. This is used to back-calculate the conduction shape factor. In the experimental study, the potential difference, V and current, I, was measured using a high precision data acquisition unit. The results were used to calculate the shape resistance which was compared with that obtained from the numerical model. Grid independence tests were performed on the model and several analytically derived standard shape factor formulae were also used for comparison with the model outputs. The deviation of the numerical results from the analytical formulae for the cases studied was less than +1.2%. The agreement between the experiments and the numerical model was within +3.5%. The results demonstrated the adequacy of the numerical approach to modeling the wavy fintube heat transfer. Effects such as differences in fin shape, fin length and waviness of the fin design on the shape factor were determined and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.