The Archean Golden Pond sequence is made up of deformed and metamorphosed conglomerates, greywackes, and mafic volcanic rocks, and is overlain by ferrugineous metasedimentary rocks of the North iron formation. The clastic rocks were derived mainly from a volcanic source that had undergone weak chemical weathering. Their source area was dominated by the presence of 60–80% high-Al2O3 felsic volcanics having strongly fractionated [La/Sm]N (= 3.7 ± 0.3) and very low Ta/Th ratios (= 0.09 ± 0.02), with lesser proportions of basaltic (10–30%) and ultramafic volcanic rocks (1–10%). The ferrugineous metasedimentary rocks can be modelled by mixing 20–40% siliciclastic material, of the composition of the average Golden Pond greywacke, with an Fe- and Si-rich precipitate (molecular Fe/Si = 0.6 ± 0.2). The high-Al2O3 felsic source rocks were most likely produced by subduction processes within an oceanic arc environment, but the mafic and ultramafic volcanic rocks were derived by different processes from an asthenospheric mantle source, possibly in an oceanic rift environment. Therefore, it is suggested that the ultramafic, mafic, and felsic volcanic rocks were brought to the same erosional level by dissection of the arc system and rapid exhumation of the felsic arc lithologies and the deeper ocean floor. Intrabasinal hydrothermal activity associated with contemporaneous mafic volcanism and (or) graben development may have also been responsible for the local production of the Fe-rich precipitates of the North iron formation.
The La Romaine Supracrustal Belt and the southeastern end of the Wakeham Group in the eastern Grenville Province, Canada, host a series of Pinwarian, 1.50 Ga felsic-dominated volcanic centres metamorphosed at amphibolite to granulite facies during the Grenville orogeny. The centres are interpreted as being related to the emergence of rhyolitic domes in shallow-marine intra-arc basins within the active Pinwarian continental magmatic arc. High-grade metamorphosed hydrothermal alteration zones are intimately associated with pyroclastic deposits composing these volcanic centres and an overlying composite amphibolite unit. They comprise layers of rhyolitic metatuff bearing networks of aluminous nodules and veins, migmatized garnetbiotitesillimanite gneiss with well-preserved volcanic fragments, and mottled quartzcordierite gneiss with textures similar to those of vuggy silica facies. Alteration zones of ironstone, carbonate and calc-silicate rocks, garnetite, diopsidite, epidosite, and sulphide mineralization collectively cut across the internal contacts of a composite amphibolite unit inferred to be a mafic lava and sill complex. Lithogeochemical analysis of inferred metamorphosed altered rocks and precursors highlights chemical changes typical of metamorphosed sericitic zones, advanced argillic and silicic zones, and discharge zones characterized by calcic alterations and copper mineralizations. Such zones involve the interaction of hot, very acidic to neutral fluids. Medium to heavy rare-earth elements (REE) and Zr behave as mobile elements in the hydrothermal system as a result of the presence of F-rich fluids. The chemical changes recorded by the various alteration zones share similarities with those observed in high-sulphidation, volcanic-hosted massive sulphide deposits occurring in proximal, shallow-marine, volcanic sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.