The tumor suppressor activity of maspin (mammary serine protease inhibitor) has been associated with its nuclear localization. In this study we explore the regulation of maspin nuclear translocation. An
in vitro
nuclear import assay suggested that maspin can passively enter the nucleus. However,
in silico
analysis identified a putative maspin nuclear localization signal (
NLS
), which was able to mediate the nuclear translocation of a chimeric protein containing this
NLS
fused to five green fluorescent protein molecules in tandem (5
GFP
). Dominant‐negative Ran‐
GTP
ase mutants RanQ69L or RanT24N suppressed this process. Unexpectedly, the full‐length maspin fused to 5
GFP
failed to enter the nucleus. As maspin's putative
NLS
is partially hidden in its three‐dimensional structure, we suggest that maspin nuclear transport could be conformationally regulated. Our results suggest that maspin nuclear translocation involves both passive and active mechanisms.
Convulxin (CVX), a C-type lectin-like protein isolated from the venom of the snake species, Crotalus durissus terrificus, stimulates platelet aggregation by acting as a collagen receptor agonist for glycoprotein VI found in the platelets. The effect of CVX on platelets has been studied, but its effect on human peripheral blood mononuclear cells (PBMCs) remains unclear. Given the significance of PBMCs in inflammation, this study explored the effect of CVX on PBMCs, specifically regarding NLRP3 inflammasome activation by assessing cell viability, ability to induce cell proliferation, reactive oxygen species (ROS) and nitric oxide production, interleukin (IL)-2 and IL-10 secretion, NLRP3 complex activation, and the role of C-type lectin-like receptors (CTLRs) in these. CVX was not toxic to PBMCs at the investigated concentrations and did not increase PBMC growth or IL-2 release; however, CVX induced IL-10 release and ROS generation via monocyte activation. It also activated the NLRP3 complex, resulting in IL-1β induction. Furthermore, the interaction between CVX and Dectin-2, a CTLR, induced IL-10 production. CVX interaction with CTLR has been demonstrated by laminarin therapy. Because of the involvement of residues near the Dectin-2 carbohydrate-recognition site, the generation of ROS resulted in inflammasome activation and IL-1β secretion. Overall, this work helps elucidate the function of CVX in immune system cells.
Neurospora crassa has been widely used as a model organism and contributed to the development of biochemistry and molecular biology by allowing the identification of many metabolic pathways and mechanisms responsible for gene regulation. Nuclear proteins are synthesized in the cytoplasm and need to be translocated to the nucleus to exert their functions which the importin-α receptor has a key role for the classical nuclear import pathway. In an attempt to get structural information of the nuclear transport process in N. crassa, we present herein the cloning, expression, purification and structural studies with N-terminally truncated IMPα from N. crassa (IMPα-Nc). Circular dichroism analysis revealed that the IMPα-Nc obtained is correctly folded and presents a high structural conservation compared to other importins-α. Dynamic light scattering, analytical size-exclusion chromatography experiments and molecular dynamics simulations indicated that the IMPα-Nc unbound to any ligand may present low stability in solution. The IMPα-Nc theoretical model displayed high similarity of its inner concave surface, which binds the cargo proteins containing the nuclear localization sequences, among IMPα from different species. However, the presence of non-conserved amino acids relatively close to the NLS binding region may influence the binding specificity of IMPα-Nc to cargo proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.