The proposed work presents the design and application of many-objective Jaya (MaOJaya) algorithm to optimize many-objective benchmark optimization problems. The basic Jaya algorithm is modified by introducing non-dominated sorting and tournament selection scheme of NSGA-II. The reference point mechanism is introduced to traverse algorithm towards the best solutions. The basic Jaya algorithm is modified while preserving its essential properties. The Tchebycheff-a decomposition based approach is used to simplify the complex MaOPs. The proposed MaOJaya algorithm is tested on DTLZ benchmark functions with objectives ranging from three to ten to measure its applicability and effectiveness to solve many-objective optimization problems. The IGD and Hypervolume performance metrics are used to evaluate the performance of proposed MaOJaya algorithm. The obtained IGD and Hypervolume values compared with the best known results and it is observed that, the proposed MaOJaya algorithm gives competitive or better results than known best results.
The Jaya algorithm is a recently developed novel population-based algorithm. The proposed work presents the modifications in the existing many-objective Jaya (MaOJaya) algorithm by integrating the chaotic sequence to improve the performance to optimize many-objective benchmark optimization problems. The MaOJaya algorithm has exploitation more dominating, due to which it traps in local optima. The proposed work aims to reduce these limitations by modifying the solution update equation of the MaOJaya algorithm. The purpose of the modification is to balance the exploration and exploitation, improve the divergence and avoid premature convergence. The well-known chaotic sequence - a logistic map integrated into the solution update equation. This modification keeps the MaOJaya algorithm simple as well as, preserves its parameterless feature. The other component of the existing MaOJaya algorithm, such as non-dominated sorting, reference vector and tournament selection scheme of NSGA-II is preserved. The decomposition approach used in the proposed approach simplifies the complex many-objective optimization problems. The performance of the proposed chaotic based many-objective Jaya (C-MaOJaya) algorithm is tested on DTLZ benchmark functions for three to ten objectives. The IGD and Hypervolume performance metrics evaluate the performance of the proposed C-MaOJaya algorithm. The statistical tests are used to compare the performance of the proposed C-MaOJaya algorithm with the MaOJaya algorithm and other algorithms from the literature. The C-MaOJaya algorithm improved the balance between exploration and exploitation and avoids premature convergence significantly. The comparison shows that the proposed C-MaOJaya algorithm is a promising approach to solve many-objective optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.