This article reports on a numerical and experimental investigation to understand and improve computer methods in application of the Goldak model for predicting thermal distribution in submerged arc welding (SAW) of APIX65 pipeline steel. Accurate prediction of the thermal cycle and residual stresses will enable control of the fusion zone geometry, microstructure, and mechanical properties of the SAW joint. In this study, a new Goldak heat source distribution model for SAW is presented first. Both 2D and 3D finite element models are developed using the solution of heat transfer equations in ABAQUS Standard implicit. The obtained results proved that the 2D axi-symmetric model can be effectively employed to simulate the thermal cycles and the welding residual stresses for the test steel. As compared to the 3D analysis, the 2D model significantly reduced the time and cost of the FE computation. The numerical accuracy of the predicted fusion zone geometry is compared to the experimentally obtained values for bead-on-plate welds. The predictions given by the present model were found to be in good agreement with experimental measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.