Based on the assumption that the QCD phase diagram gives a realistic picture of hadronic and quark matter under different regimes, it is possible to claim that a quark core may be present inside compact objects commonly named hybrid neutron stars or even that a pure strange star may exist. In this work we explore how the phase transition is modified by the presence of strong magnetic fields and how it is impacted by parameters of the quark phase, for which we use the MIT-model with vector interactions. The phase transition is assumed to conserve flavor when hadrons turn into deconfined quarks. The hadronic equation of state is calculated with the NL3ωρ * parametrization of quantum hadrodynamics. We find that the magnetic field slightly reduces the pressure and chemical potential of the phase transition and the latent heat, the latter being very model dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.