Abstract. At five sites in Hungary and Italy, traps baited with phenylacetaldehyde caught significantly higher numbers (10 to 100 times more) of green lacewings than unbaited traps, which demonstrates that this compound is an attractant. Traps with three bait dispensers usually caught more than those with one dispenser, but the difference was significant only at two out of five test sites. There was no difference in the numbers caught by sticky delta and funnel traps baited with phenylacetaldehyde. However, funnel traps could be adapted to catch living green lacewings. The vast majority of the specimens belonged to the Chrysoperla carnea species complex. Ch. carnea sensu lato dominated the catches at all sites. At some sites 3-11% of the insects caught were Ch. lucasina Lacroix. Phenylacetaldehyde-baited traps were attractive to both sexes, but generally more females were caught than males. Funnel traps baited with three dispensers of phenylacetaldehyde caught green lacewing adults throughout the season in Hungary.
In field trapping tests, the catch of Chrysoperla carnea sensu lato (Neuroptera: Chrysopidae) increased when acetic acid was added to lures with phenylacetaldehyde. The addition of methyl salicylate to the binary mixture of phenylacetaldehyde plus acetic acid increased catches even further. The ternary blend proved to be more attractive than beta-caryophyllene, 2-phenylethanol, or 3-methyl eugenol (compounds previously described as attractants for chrysopids) on their own, and no influence on catches was recorded when these compounds were added as fourth components to the ternary blend. There were minimal changes in activity when (E)-cinnamaldehyde or methyl anthranylate (both evoking large responses from female or male antennae of C. carnea in this study) were added, although both compounds showed significant attraction on their own when compared to unbaited traps. In subtractive field bioassays with the ternary mixture, it appeared that the presence of either phenylacetaldehyde or methyl salicylate was important, whereas acetic acid was less so in the ternary mixture. The ternary blend attracted both female and male lacewings at sites in southern, central, and northern Europe. Possible applications of a synthetic attractant for lacewings are discussed.
During the last decades, the economic importance of tephritid fruit flies (FF) has increased worldwide because of recurrent invasions and expansions into new areas, and reduced control capabilities of current control systems. Efficient monitoring systems, thus, are required to provide fast information to act promptly. With this aim in mind, we developed two electronic trap (e‐trap) versions for adult FF: one with specific volatiles for male and female adult Ceratitis capitata, and the second, based on the attraction of adult FF to yellow colour, targeting Dacus ciliatus, Rhagoletis cerasi and Bactrocera oleae. In the case of B. oleae, the female pheromone and ammonium bicarbonate were added as synergists. In the two versions, attracted FF were retained in the trap on glued surfaces. Real‐time images of the surfaces were automatically taken and transmitted to a server. We tested the two e‐trap versions in insect‐proof cages, where flies were released and recaptured, and in commercial orchards throughout the Mediterranean: C. capitata in peach orchards in Italy; R. cerasi in cherry orchards in Greece; B. oleae in olive orchards in Spain and in Greece; and D. ciliatus in melons in plastic tunnels in Israel. The e‐trap showed excellent abilities to transmit real‐time images of trapped FF and a high specificity for trapping different FF species. The ability of the entomologist to correctly classify FF from images in the office was >88%. In addition, average number of flies/trap in e‐trap grids did not differ from numbers reported on grids of conventional traps that were operating simultaneously. The e‐traps developed and tested in this study provide the basis for the real‐time monitoring of FF were no olfactory attractants are available, and for the surveillance of alien FF incursions where generic, but not specific, olfactory attractants exists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.