The effects of prestraining at room temperature and at the creep temperature of 848 K, as well as the responses to stress reductions during creep, have been studied for 316 stainless steels varying in composition and initial microstructure. The results are analyzed by contrasting the strengthening effects achieved by introducing high dislocation densities prior to creep exposure with the deleterious effects, which can occur when prestraining causes premature void nucleation at grain boundaries. In addition, by recognizing the differing contributions made by the grain interiors and the grain boundary zones to the overall rates of creep strain accumulation, a consistent explanation is provided for the diverse creep behavior patterns reported for different metals and alloys after various prestraining treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.