SummaryThe etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.
SummaryPathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii , the agent of Q fever in man is a Gram-negative g g g g -proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 -a protein also localized to autophagic vacuoles -likewise accelerated the development of Coxiella -vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.
The obligate intracellular bacterium Coxiella burnetii, the agent of Q fever in humans and of coxiellosis in other animals, survives and replicates within large, acidified, phagolysosome-like vacuoles known to fuse homo-and heterotypically with other vesicles. To further characterize these vacuoles, HeLa cells were infected with C. burnetii phase II; 48 h later, bacteria-containing vacuoles were labeled by LysoTracker, a marker of acidic compartments, and accumulated monodansylcadaverine and displayed protein LC3, both markers of autophagic vacuoles. Furthermore, 3-methyladenine and wortmannin, agents known to inhibit early stages in the autophagic process, each blocked Coxiella vacuole formation. These autophagosomal features suggest that Coxiella vacuoles interact with the autophagic pathway. The localization and role of wild-type and mutated Rab5 and Rab7, markers of early and late endosomes, respectively, were also examined to determine the role of these small GTPases in the trafficking of C. burnetii phase II. Green fluorescent protein (GFP)-Rab5 and GFP-Rab7 constructs were overexpressed and visualized by fluorescence microscopy. Coxiella-containing large vacuoles were labeled with wild-type Rab7 (Rab7wt) and with GTPase-deficient mutant Rab7Q67L, whereas no colocalization was observed with the dominant-negative mutant Rab7T22N. The vacuoles were also decorated by GFP-Rab5Q79L but not by GFP-Rab5wt. These results suggest that Rab7 participates in the biogenesis of the parasitophorous vacuoles.
SummaryCoxiella burnetii is an obligate intracellular pathogen that replicates in large endocytic vacuoles. Genomic sequence data indicate that 21 genes encoding products that are similar to components of the Legionella pneumophila Dot/Icm type IV secretion system are located on a contiguous 35 kb region of the Coxiella chromosome. It was found that several dot / icm genes were expressed by Coxiella during host cell infection and that dot / icm gene expression preceded the formation of large replicative vacuoles. To determine whether these genes encode a functional type IV secretion system, we have amplified the Coxiella dotB , icmQ , icmS and icmW genes and produced the encoded proteins in Legionella mutants in which the native copy of each gene had been deleted. The Coxiella dotB , icmS and icmW products restored dot / icmdependent growth of Legionella mutants in eukaryotic host cells. The Coxiella IcmQ protein and the Legionella IcmR protein did not interact, which could explain why the Coxiella icmQ gene was unable to restore growth to a Legionella icmQ mutant. Thus, Coxiella encodes functional components of a type IV secretion system expressed in vivo that is mechanistically related to the Legionella Dot/Icm apparatus. These studies suggest that a dot / icm -related secretion system could play an important role in creating the specialized vacuole that supports Coxiella replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.