The two-parameter Weibull distribution has garnered much attention in the assessment of windenergy potential. The estimation of the shape and scale parameters of the distribution has broughtforth a successful tool for the wind energy industry. However, it may be inappropriate to use thetwo-parameter Weibull distribution to assess energy at every location, especially at sites wherelow wind speeds are frequent, such as the Equatorial region. In this work, a robust technique inwind resource assessment using a Bayesian approach for estimating Weibull parameters is firstproposed. Secondly, the wind resource assessment techniques using a two-parameter Weibulldistribution and a three-parameter Weibull distribution which is a generalized form of twoparameterWeibull distribution are compared. Simulation studies confirm that the Bayesianapproach seems a more robust technique for accurate estimation of Weibull parameters. Theresearch is conducted using data from seven sites in Equatorial region from 1o N of Equator to 19oSouth of Equator. Results reveal that a three-parameter Weibull distribution with non-zero shiftparameter is a better fit for wind data having a higher percentage of low wind speeds (0-1 m/s) andlow skewness. However, wind data with a smaller percentage of low wind speeds and highskewness showed better results with a two-parameter distribution that is a special case of threeparameterWeibull distribution with zero shift parameter. The results also demonstrate that theproposed Bayesian approach and application of a three-parameter Weibull distribution areextremely useful in accurate estimate of wind power and annual energy production.
The two-parameter Weibull distribution has garnered much attention in the assessment of windenergy potential. The estimation of the shape and scale parameters of the distribution has broughtforth a successful tool for the wind energy industry. However, it may be inappropriate to use thetwo-parameter Weibull distribution to assess energy at every location, especially at sites wherelow wind speeds are frequent, such as the Equatorial region. In this work, a robust technique inwind resource assessment using a Bayesian approach for estimating Weibull parameters is firstproposed. Secondly, the wind resource assessment techniques using a two-parameter Weibulldistribution and a three-parameter Weibull distribution which is a generalized form of twoparameterWeibull distribution are compared. Simulation studies confirm that the Bayesianapproach seems a more robust technique for accurate estimation of Weibull parameters. Theresearch is conducted using data from seven sites in Equatorial region from 1o N of Equator to 19oSouth of Equator. Results reveal that a three-parameter Weibull distribution with non-zero shiftparameter is a better fit for wind data having a higher percentage of low wind speeds (0-1 m/s) andlow skewness. However, wind data with a smaller percentage of low wind speeds and highskewness showed better results with a two-parameter distribution that is a special case of threeparameterWeibull distribution with zero shift parameter. The results also demonstrate that theproposed Bayesian approach and application of a three-parameter Weibull distribution areextremely useful in accurate estimate of wind power and annual energy production.
The two-parameter Weibull distribution has garnered much attention in the assessment of windenergy potential. The estimation of the shape and scale parameters of the distribution has broughtforth a successful tool for the wind energy industry. However, it may be inappropriate to use thetwo-parameter Weibull distribution to assess energy at every location, especially at sites wherelow wind speeds are frequent, such as the Equatorial region. In this work, a robust technique inwind resource assessment using a Bayesian approach for estimating Weibull parameters is firstproposed. Secondly, the wind resource assessment techniques using a two-parameter Weibulldistribution and a three-parameter Weibull distribution which is a generalized form of twoparameterWeibull distribution are compared. Simulation studies confirm that the Bayesianapproach seems a more robust technique for accurate estimation of Weibull parameters. Theresearch is conducted using data from seven sites in Equatorial region from 1o N of Equator to 19oSouth of Equator. Results reveal that a three-parameter Weibull distribution with non-zero shiftparameter is a better fit for wind data having a higher percentage of low wind speeds (0-1 m/s) andlow skewness. However, wind data with a smaller percentage of low wind speeds and highskewness showed better results with a two-parameter distribution that is a special case of threeparameterWeibull distribution with zero shift parameter. The results also demonstrate that theproposed Bayesian approach and application of a three-parameter Weibull distribution areextremely useful in accurate estimate of wind power and annual energy production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.