The short-chain fatty acid propionate is a potent inhibitor of molds that is widely used as a food preservative and endogenously produced by gut microbiota. Although generally recognized as safe by the U.S. Food and Drug Administration, the metabolic effects of propionate consumption in humans are unclear. Here, we report that propionate stimulates glycogenolysis and hyperglycemia in mice by increasing plasma concentrations of glucagon and fatty acid–binding protein 4 (FABP4). Fabp4-deficient mice and mice lacking liver glucagon receptor were protected from the effects of propionate. Although propionate did not directly promote glucagon or FABP4 secretion in ex vivo rodent pancreatic islets and adipose tissue models, respectively, it activated the sympathetic nervous system in mice, leading to secretion of these hormones in vivo. This effect could be blocked by the pharmacological inhibition of norepinephrine, which prevented propionate-induced hyperglycemia in mice. In a randomized, double-blind, placebo-controlled study in humans, consumption of a propionate-containing mixed meal resulted in a postprandial increase in plasma glucagon, FABP4, and norepinephrine, leading to insulin resistance and compensatory hyperinsulinemia. Chronic exposure of mice to a propionate dose equivalent to that used for food preservation resulted in gradual weight gain. In humans, plasma propionate decreased with weight loss in the Dietary Intervention Randomized Controlled Trial (DIRECT) and served as an independent predictor of improved insulin sensitivity. Thus, propionate may activate a catecholamine-mediated increase in insulin counter-regulatory signals, leading to insulin resistance and hyperinsulinemia, which, over time, may promote adiposity and metabolic abnormalities. Further evaluation of the metabolic consequences of propionate consumption is warranted.
Increased vascular superoxide production plays a central role in the development of vascular endothelial dysfunction and hypertension early after 5/6 nephrectomy.
The DNA end-joining protein Ku70 is one of several proteins that inhibit apoptosis by sequestering the proapoptotic factor Bax from the mitochondria. However, the molecular mechanism underlying Ku70-dependent inhibition of Bax is not fully understood. Here
Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.
The mammalian NAD+ dependent deacetylase, SIRT1, was shown to be a key protein in regulating glucose homeostasis, and was implicated in the response to calorie restriction. We show here that levels of SIRT1 increased in response to nutrient deprivation in cultured cells, and in multiple tissues of mice after fasting. The increase in SIRT1 levels was due to stabilization of SIRT1 protein, and not an increase in SIRT1 mRNA. In addition, p53 negatively regulated SIRT1 levels under normal growth conditions and is also required for the elevation of SIRT1 under limited nutrient conditions. These results have important implications on the relationship between sirtuins, nutrient availability and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.