Assessing the value of a power plant is an important issue for plant owners and prospective buyers. In a deregulated market, an owner has the option to operate the plant when the revenue from selling the electricity is higher than the cost of operating the plant. This option is known as the spark spread option. Under emission restrictions, when the carbon cost is deducted from the spark spread, the option is named as the clean spark spread option. This thesis presents an analysis on the spark spread and clean spark spread option based valuation methods for a power plant with multiple gas turbines having different input–output characteristics, emission rates, and capacities. Electricity, natural gas and carbon allowance prices are assumed to follow mean–reverting processes. Results demonstrate that CO2 allowance cost reduces the expected plant value, while the flexibility of switching among turbines adds value to the power plant. Weather also affects the power plant operation. This thesis also presents a valuation model for a power plant integrating spark spread and weather options. A cooler winter drawing more electricity could generate a higher payoff for the plant owner. A warmer winter, however, could lead to a lower payoff. An owner holding a long position in a temperature–based put option could exercise the option when the winter is milder. The exercise is triggered by the drop of heating degree days below a strike degree day. The number of weather contracts to buy is determined by minimizing the variance of the total payoff. Pricing of the weather option is calculated based on the mean–reverting behavior of temperature. Results demonstrate that the integrating weather option along with spark spread option adds value to the downward spark spread option based valuation of the plant in a warmer winter. A comparison of temperature modeling approaches with an aim to pricing weather option is also investigated. Regime–switching models generated from a combination of different underlying processes are utilized to determine the expected heating and cooling degree days. Weather option prices are then calculated based on a range of strike heating degree days.
Assessing the value of a power plant is an important issue for plant owners and prospective buyers. In a deregulated market, an owner has the option to operate the plant when the revenue from selling the electricity is higher than the cost of operating the plant. This option is known as the spark spread option. Under emission restrictions, when the carbon cost is deducted from the spark spread, the option is named as the clean spark spread option. This thesis presents an analysis on the spark spread and clean spark spread option based valuation methods for a power plant with multiple gas turbines having different input–output characteristics, emission rates, and capacities. Electricity, natural gas and carbon allowance prices are assumed to follow mean–reverting processes. Results demonstrate that CO2 allowance cost reduces the expected plant value, while the flexibility of switching among turbines adds value to the power plant. Weather also affects the power plant operation. This thesis also presents a valuation model for a power plant integrating spark spread and weather options. A cooler winter drawing more electricity could generate a higher payoff for the plant owner. A warmer winter, however, could lead to a lower payoff. An owner holding a long position in a temperature–based put option could exercise the option when the winter is milder. The exercise is triggered by the drop of heating degree days below a strike degree day. The number of weather contracts to buy is determined by minimizing the variance of the total payoff. Pricing of the weather option is calculated based on the mean–reverting behavior of temperature. Results demonstrate that the integrating weather option along with spark spread option adds value to the downward spark spread option based valuation of the plant in a warmer winter. A comparison of temperature modeling approaches with an aim to pricing weather option is also investigated. Regime–switching models generated from a combination of different underlying processes are utilized to determine the expected heating and cooling degree days. Weather option prices are then calculated based on a range of strike heating degree days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.