Abstract. Deep learning-based depth estimation has become an important topic in recent years, not only in the field of computer vision. Also in the context of remote sensing, scientists started a few years ago to adapt or develop suitable approaches to realize a reconstruction of the Earth’s surface without requiring several images. There are many reasons for this: First, of course, the aspect of general economization, since especially high-resolution satellite images are often accompanied by high data acquisition costs. In addition, there is also the desire to be able to acquire high-quality geoinformation as quickly as possible in time-critical cases – for example, the provision of up-to-date maps for emergency forces in disaster scenarios. Finally, a reconstruction of topography based only on single images can also provide important approximate values for the classic multi-image methods. For example, various processing steps in a classical InSAR process chain require a rough knowledge of the Earth’s surface in order to achieve the most accurate and reliable results. In this paper, we review the developments documented in the remote sensing literature so far. Using an established neural network architecture, we produce example results for both very-high-resolution SAR and optical imagery. The comparison shows that SAR-based single-image-height reconstruction seems to bear an even greater potential than single-image height reconstruction from optical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.