The hydration of gas phase Na+ ions produced by electrospray ionization was investigated via high resolution time-of-flight mass spectrometry. Water clusters with up to 80 H2O units have been observed with attention to special peculiarities of mass peaks and structures in the envelope of the mass spectra. For solvated Na+-ions no particularly prominent peaks corresponding to "magic numbers" have been observed in the spectra. In addition, the mass spectra of Na+(H2O)(n) aggregates are compared with those of the H3O+(H2O)(n) system. As a very first step towards a theoretical understanding of the intensities of the experimental mass spectra we have calculated global minimum structures for the Na+(H2O)(n) system with n=4-25, using global geometry optimization methods and a simple model potential for this system. Structural and energetic trends and the systematic build-up of solvent shells of the clusters were studied. Within our simple theoretical model we have not observed (symmetric) clathratelike structures with a central Na+-ion inside as global minimum structures. Instead, a structural transition for n between 17 and 18 water units was found, in agreement with the experimental observations. The unimportance of clathratelike structures and the competition between the two structural principles discovered in this work are proposed as an explanation for the notorious lack of "magic" numbers in the mass spectrum of Na+(H2O)(n) clusters. (C) 2002 American Institute of Physics
Many semiconductors exhibit the property of phosphorescence, the phenomenon whereby a material excited by visible or ultraviolet radiation glows (i.e., emits visible light) for a substantial time after the excitation source has been removed. Absorption of visible or ultraviolet radiation, from sunlight or room lights, causes excitation of electrons and produces nonequilibrium concentrations of electrons and holes in the solid. Light is emitted as the electrons recombine with the holes, a process that occurs at a rate dependent on the material and the temperature. One phosphorescent semiconductor commonly used in glow-in-the dark toys and emergency signs is copper-doped zinc sulfide (ZnS:Cu), a material that produces a yellow-green glow. We have found the study of this light emission to be a suitable introduction to kinetics and to semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.