The infrared SST autonomous radiometer (ISAR) is a self-calibrating instrument capable of measuring in situ sea surface skin temperature (SSTskin) to an accuracy of 0.1 K. Extensive field deployments alongside two independent research radiometers measuring SSTskin using different spectral and geometric configurations show that, relatively, ISAR SSTskin has a zero bias Ϯ0.14 K rms. The ISAR instrument has been developed for satellite SST validation and other scientific programs. The ISAR can be deployed continuously on voluntary observing ships (VOS) without any service requirement or operator intervention for periods of up to 3 months. Five ISAR instruments have been built and are in sustained use in the United States, China, and Europe. This paper describes the ISAR instrument including the special design features that enabled a single channel radiometer with a spectral bandpass of 9.6-11.5 m to be adapted for autonomous use. The entire instrument infrared optical path is calibrated by viewing two blackbody reference cavities at different temperatures to maintain high accuracy while tolerating moderate contamination of optical components by salt deposition. During bad weather, an innovative storm shutter, triggered by a sensitive optical rain gauge, automatically seals the instrument from the external environment. Data are presented that verify the instrument calibration and functionality in such situations. A watchdog timer and auto-reboot function support automatic data logging recovery in case of power outages typically encountered on ships. An RS485 external port allows supporting instruments that are not part of the core ISAR package (e.g., a solarimeter) to be logged using the ISAR system. All data are processed by the ISAR instrument and are relayed to a host computer via the RS232 serial link as (National Electronics Manufacturers Association) NEMA-style strings allowing easy integration into many commercial onboard scientific data logging systems. In case of a communications failure, data are stored on board using a CompactFlash card that can be retrieved when the instrument is serviced. The success of the design is demonstrated using results obtained over 21 months in the English Channel and Bay of Biscay as part of a campaign to validate SSTskin observations derived from the Environmental Satellite (Envisat) Advanced Along-Track Scanning Radiometer (AATSR).
The sea surface temperature (SST) relevant to air‐sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air‐Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER‐East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk‐skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three‐step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER‐East.
The Around the Americas expedition was a 25,000 mile sailing circumnavigation of the North and South American continents, in coastal waters, that took place from June 2009 to June 2010. The broad geographical span of the voyage made it possible to measure marine aerosol optical depths in regions where surface measurements are not frequently taken. These were measured with a handheld Microtops II Sun photometer. In this study we compare these measurements with the ocean aerosol product from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra platforms. Results for aerosol optical depth (AOD) show a strong relationship between both measurements, with most values from MODIS falling within published expectations. However, MODIS values are biased high relative to surface observations for small optical depth values. There appears to be a relationship between these discrepancies in measurements and surface wind speed, with a group of values showing overestimation at wind speeds near and over 6 m/s and a second, smaller group showing underestimation for calmer conditions. For derived Ångström exponents, it is found that higher differences occur at low AOD. No relationship between these differences and wind speed is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.