Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsβ fragments, generated by non-amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsβ in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsβ failed to show any detectable effects on synaptic plasticity and spine density. The C-terminal 16 amino acids of APPsα (lacking in APPsβ) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7-nAChRs. Further, APPsα showed high-affinity, allosteric potentiation of heterologously expressed α7-nAChRs in oocytes. Collectively, we identified α7-nAChRs as a crucial physiological receptor specific for APPsα and show distinct roles for APPsα versus APPsβ. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsβ.
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer’s disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.
Cell suspensions of immune rabbit lymph nodes and spleen were capable of undergoing blastogenesis and mitosis and of incorporating tritiated thymidine when maintained in culture with the specific antigen in vitro. They did not respond to other, non-cross-reacting antigens. The blastogenic response obtained with immune lymph node cells could be correlated with the antibody synthesizing capacity of fragment cultures prepared from the same lymph nodes. Cell suspensions of immune bone marrow responded to non-cross-reacting antigens only whereas cell suspensions of immune thymus, sacculus rotundus, and appendix did not respond when exposed to any of the antigens tested. On the other hand, neither fragments nor cell suspensions prepared from lymph nodes, spleen, and thymus of normal, unimmunized rabbits responded with antibody formation and blastogenesis when exposed to any of the antigens. However, normal bone marrow cells responded with marked blastogenesis and tritiated thymidine uptake. The specificity of this in vitro bone marrow response was demonstrated by the fact that the injection of a protein antigen in vivo resulted in the loss of reactivity by the marrow cell to that particular antigen but not to the other, non-cross-reacting antigens. Furthermore, bone marrow cells of tolerant rabbits failed to respond to the specific antigen in vitro. It was also demonstrated that normal bone marrow cells incubated with antigen are capable of forming antibody which could be detected by the fluorescent antibody technique. This response of the bone marrow cells has been localized to the lymphocyte-rich fraction of the bone marrow. It is concluded that the bone marrow lymphocyte, by virtue of its capacity to react with blastogenesis and mitosis and with antibody formation upon initial exposure to the antigen, a capacity not possessed by lymphocytes of the other lymphoid organs, has a preeminent role in the sequence of cellular events culminating in antibody formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.