This work focuses on developing a seamlessly integrated modeling platform for manufacturing, designing, and analyzing fiber-reinforced composite structures. The manufacturing method is vacuum assisted resin transfer molding, and the analysis method is the finite element method. The unique integration of two commercial software (Moldex3D and ABAQUS) with additional interfaces and physics-based micromechanics enables variabilities during the manufacturing to be directly embedded into the structural analysis. The manufacturing output is the resin pressure which is used to predict the compaction pressure and calculate local fiber volume fractions. The predicted non-uniform volume fractions provide local mechanical properties allowing seamless transfer of process effects and properties variability to the final structural analysis. Three demonstrators are presented as examples for simulation and validation against experiments, both in manufacturing and structural performance. The results show very good agreement between simulations and experiments regarding resin flow times and measurements (within 17%) and demonstrators’ structural stiffness (within 15%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.