We study the single impurity Anderson model in an external magnetic field. There are no exact results for the spectral function in this situation. Using a resummation of the diagrammatic expansion we demonstrate that the strong coupling regime in a weak magnetic field is Kondo-like with a quasiparticle resonant peak split into two. We find two exponentially small Kondo scales (temperatures), one for transverse and one for longitudinal spin fluctuations. We show that the salient features of the spectral function in the Kondo regime can be seen already within an extended random phase approximation. To reveal the dependence of the Kondo scales on the bare electron interaction, however, one has to employ a two-particle self-consistency with renormalized vertices. We use the parquet approach to derive the dependence of the Kondo scales on magnetic field.
Abstract. We study hierarchies of replica-symmetry-breaking solutions of the Sherrington-Kirkpatrick model. Stationarity equations for order parameters of solutions with an arbitrary number of hierarchies are set and the limit to infinite number of hierarchical levels is discussed. In particular, we demonstrate how the continuous replica-symmetry breaking scheme of Parisi emerges and how the limit to infinite-many hierarchies leads to equations for the order-parameter function of the continuous solution. The general analysis is accompanied by an explicit asymptotic solution near the de Almeida-Thouless instability line in the nonzero magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.