Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS- and NMR-based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer-specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β-oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.
Physiological and functional parameters, such as body composition, or physical fitness are known to differ between men and women and to change with age. The goal of this study was to investigate how sex and age-related physiological conditions are reflected in the metabolome of healthy humans and whether sex and age can be predicted based on the plasma and urine metabolite profiles.In the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study 301 healthy men and women aged 18–80 years were recruited. Participants were characterized in detail applying standard operating procedures for all measurements including anthropometric, clinical, and functional parameters. Fasting blood and 24 h urine samples were analyzed by targeted and untargeted metabolomics approaches, namely by mass spectrometry coupled to one- or comprehensive two-dimensional gas chromatography or liquid chromatography, and by nuclear magnetic resonance spectroscopy. This yielded in total more than 400 analytes in plasma and over 500 analytes in urine. Predictive modelling was applied on the metabolomics data set using different machine learning algorithms.Based on metabolite profiles from urine and plasma, it was possible to identify metabolite patterns which classify participants according to sex with > 90% accuracy. Plasma metabolites important for the correct classification included creatinine, branched-chain amino acids, and sarcosine. Prediction of age was also possible based on metabolite profiles for men and women, separately. Several metabolites important for this prediction could be identified including choline in plasma and sedoheptulose in urine. For women, classification according to their menopausal status was possible from metabolome data with > 80% accuracy.The metabolite profile of human urine and plasma allows the prediction of sex and age with high accuracy, which means that sex and age are associated with a discriminatory metabolite signature in healthy humans and therefore should always be considered in metabolomics studies.
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow.
Meat and fish consumption differentially affects TMAO concentrations in body fluids. Only a small fraction of variance is explained by current diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.