We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main‐sequence or a late‐type low‐mass companion, are discussed.
Abstract.We analyse the time variability of the total solar irradiance (TSI) as measured by VIRGO/SoHO in order to model the variability of the Sun as a star. Apart from the phases near the minimum at the beginning of activity cycle 23, the period of the rotational modulation is significantly different from the solar synodic period as a consequence of the growth and decay of active regions on time scales shorter than a solar rotation. In order to model the variability of the TSI, we have considered the contributions of discrete active regions and a uniformly distributed background emission. To reproduce the rotational modulation of the TSI, we used three active regions, the areas and coordinates of which were changed every seven days to account for their evolution. The simultaneous presence of dark spots and bright faculae was considered by means of appropriate contrast functions which took into account the observed center-to-limb dependence of their contrast with respect to the unperturbed photosphere. The method proved to be capable of modelling the variability of the TSI on time scales going from 7−10 days up to the solar cycle. The relative amplitude of the residuals was of the order of (1−2) × 10 −4 with the larger values observed during the phases of maximum solar activity of cycle 23. The application of a similar technique to solar-like stars, such as those that will be observed by the next generation of space-borne photometers, should allow us to minimize the effects of stellar magnetic activity on the detection of planetary transits. Moreover, the availability of long-term highly accurate light curves will allow us to measure stellar rotation period, detect stellar activity cycles, and derive information on the inclination of the stellar rotation axis. The location of the active regions and their irradiance properties can also be retrieved with moderate accuracy from single-band light curves. However, a combination of multi-band photometry and spectroscopy will allow us to constrain some of the free parameters of the model and improve the mapping of stellar surfaces.
Abstract. We report on the progress of our ongoing photometric monitoring program of spotted late-type stars with automatic photoelectric telescopes (APTs) on Mt. Hopkins in Arizona and on Mt. Etna in Sicily. We present 9 250 differential UBV and/or V (RI) C observations for altogether 23 chromospherically active stars, singles and binaries, pre main sequence and post main sequence, taken between 1991 and 1996. The variability mechanism of our target stars is mostly rotational modulation by an asymmetrically spotted stellar surface. Therefore, precise rotational periods and their seasonal variations are determined using baselines between 3 years for HD 129333 to 34 years for V410 Tauri. We report the largest V light-curve amplitude of any spotted star observed to date: 0.m 65 for V410 Tau in 1994-95. Long-term variations of the overall light levels of our target stars are sometimes of similar amplitude as the rotational modulation itself and are most likely caused by an analog of the solar 11-year spot cycle but mostly without a well-defined periodicity. For some of our target stars (HD 12545, HD 17433, EI Eri, V410 Tau, LQ Hya, and HD 106225) we estimate a probable cycle period. A complete light curve of the semi-regular S-type giant HR Pegasii is presented. All data are available via the WorldWideWeb 1 .
Context. The space missions MOST, COROT and Kepler are going to provide us with highprecision optical photometry of solar-like stars with time series extending from tens of days to several years. They can be modelled to obtain information on stellar magnetic activity by fitting the rotational modulation of the stellar flux produced by the brightness inhomogeneities associated with photospheric active regions.Aims. The variation of the total solar irradiance provides a good proxy for those photometric time series and can be used to test the performance of different spot modelling approaches.Methods. We test discrete spot models as well as maximum entropy and Tikhonov regularized spot models by comparing the reconstructed total sunspot area variation and longitudinal distributions of sunspot groups with those actually observed in the Sun along activity cycle 23. Appropriate statistical methods are introduced to measure model performance versus the timescale of variation.Results. The maximum entropy regularized spot models show the best agreement with solar observations reproducing the total sunspot area variation on time scales ranging from a few months to the activity cycle, although the model amplitudes are affected by systematic errors during the minimum and the maximum activity phases. The longitudinal distributions derived from the models compare well with the observed sunspot group distributions except during the minimum of activity, when faculae dominate the rotational modulation. The resolution in longitude attainable through the spot modelling is ∼ 60 • , on average. Conclusions.The application of the maximum entropy modelling to solar analogues will provide us with a quite detailed picture of their photospheric magnetic activity that can be the base for comparative and evolutionary studies of solar-like magnetic activity and irradiance variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.