Although immunocontraception based on porcine zona pellucida (ZP) proteins is widely applied in many species, it is not suitable for cat contraception due to the lack of cross-reactivity. Since the first ZP gene expressed during oocyte growth in domestic cats is ZPB, we assumed that immunization with feline ZPB (fZPB)-derived synthetic peptides may cause irreversible infertility, which would be preferable in stray cats. Thus, the present study evaluated the immunogenicity and the contraceptive potential of synthetic fZPB peptides. Antigenic epitope sequences were detected via epitope mapping using specific rabbit anti-fZP antibodies. Six peptides representing the recognized epitopes were synthesized subsequently. Two out of six peptides (ZPB amino acid residue 130 -149 5 P3 and 175-193 5 P6) cross-reacted with anti-fZP antiserum in dot blot analysis and ELISA. Coupled to BSA, both peptides were utilized to produce specific antibodies in rats. Despite several booster injections the antibody titers monitored by ELISA did not exceed 1:5000. Both rat antisera were tested for contraceptive potential in cat in vitro maturation/in vitro fertilization (IVF). Antiserum against peptide P3 significantly inhibited sperm binding and fertilization of cat oocytes in vitro (57.3% of sperm binding; 41.5% of fertilization), whereas the inhibition by anti-P6 was not significant. Pre-incubation of sperm cells with both peptides before IVF failed to affect either sperm binding or fertilization (22.3 6 3.7 sperm/egg vs 25.5 6 5.8 for P3 and 20.7 6 4.0 for P6, respectively). In conclusion, antibodies directed against one of the two identified antigenic determinants of fZPB inhibited sperm binding and IVF and therefore showed promising results as a contraceptive. However, the specific immune response and anti-fertile properties of this synthetic vaccine have to be examined in vivo to verify the suitability of its components.
Despite many efforts, the control of reproduction in feral cat populations is still a problem in urban regions around the world. Immunocontraception is a promising approach; thus the present study examined the suitability of the widely used pig zona pellucida proteins (pZP) for contraception in feral domestic cats. Purified zona pellucida proteins obtained from pig and cat ovaries were used to produce highly specific antisera in rabbits. Antibodies against pZP raised in rabbits or lions were not effective inhibitors of either in vitro sperm binding (cat spermatozoa to cat oocytes) or in vitro fertilization in cats, whereas antibodies against feline zona pellucida proteins (fZP) raised in rabbits showed a dose-dependent inhibition of in vitro fertilization. Immunoelectrophoresis, ELISA and immunohistology of ovaries confirmed these results, showing crossreactivity of anti-fZP sera to fZP and to a lesser extent to pZP, but no interaction of anti-pZP sera with fZP. It is concluded that cat and pig zonae pellucidae express a very small number of shared antigenic determinants, making the use of pZP vaccine in cats questionable. A contraceptive vaccine based on feline zona pellucida determinants will be a better choice for the control of reproduction in feral cats if immunogenity can be achieved.
Because of its low levels in late pregnancy, the relationship of progesterone to pregnancy maintenance in Equidae is not obvious. This study investigated the levels of progesterone (4‐pregnane‐3,20‐dione; P4) and 5α‐dihydroprogesterone (5α‐DHP) during pregnancy in zebras in relation to reproductive state. Blood samples from female zebras (Equus burchelli, E. zebra hartmannae, E. grevyi) were taken at Dvur Kralove Zoo. Progesterone and 5α‐DHP were separated by high‐performance liquid chromatography techniques and detected by cross‐reacting antibodies. Identification of progestins was achieved by comparing the identity of peaks of the samples with a standard. In E. z. hartmannae progesterone, values reached 50 ng/mL at the beginning of pregnancy and dropped to levels below 1 ng/mL during the second half of pregnancy. In contrast, 5α‐DHP increased up to 123 and 183 ng/mL during late pregnancy in E. z. hartmannae and E. burchelli, respectively. In E. grevyi, 5α‐DHP levels of 368 ng/mL were obtained during pregnancy, whereas progesterone values were similar in pregnant and non‐pregnant individuals. These marked differences in the course of progesterone and 5α‐DHP levels point to the importance of 5α‐DHP for pregnancy maintenance in zebras. Zoo Biol 18:325–333, 1999. © 1999 Wiley‐Liss, Inc.
The Mongolian gerbil has been used as laboratory animal since 1935. Breeding gerbils as an isolated laboratory population for decades may have led to a domestication process whose effects include changes in brain size. Quantitative changes in testicular activity could be assumed. Comparative intraspeci®c measurements were performed in 34 adult males of the laboratory strain (LAB) and in males raised as offspring of wild Mongolian gerbils (WILD) caught in central Mongolia (F 1 , n = 16; F 2 , n = 17). LAB and WILD were examined in January. Testicular spermatozoa were counted, proportions of different cell types were analysed using DNA¯ow cytometry, and mitotic and meiotic activity was calculated from DNA histograms. Intratesticular testosterone concentrations were measured with an enzyme immunoassay. In the WILD, testicular activity was lower and varied more. The overall weight, the ef®ciency of spermatogenesis (sperm/g testis) and resulting total sperm per testis were signi®cantly less in offspring of wild gerbils. This corresponded with lower levels of haploid cells, total germ cell transformation of diploid cells to spermatids and meiotic transformation of spermatocytes to spermatids. The most profound difference was found in testicular testosterone concentration: the mean level was 405.7 41.2 ng/g testis in LAB vs 6.4 2.0 ng/g in WILD F 1 . All parameters changed in WILD F 2 generation compared with F 1 and diminished the differences with LAB. Differences between F 1 and F 2 were signi®cant for testis mass, testis/ body weight ratio, percentages of haploid cells and cells in G 2 /M phase, both germ cell transformations and testosterone concentration. The results suggest rapid, adaptive changes of male reproductive physiology in the early offspring generations from wild populations under laboratory breeding conditions. The breeding of Mongolian gerbils in the laboratory has in¯uenced the testicular function resulting in increased spermatogenic activity and highly stimulated testosterone production.
The Mongolian gerbil has been used as laboratory animal since 1935. Breeding gerbils as an isolated laboratory population for decades may have led to a domestication process whose effects include changes in brain size. Quantitative changes in testicular activity could be assumed. Comparative intraspeci®c measurements were performed in 34 adult males of the laboratory strain (LAB) and in males raised as offspring of wild Mongolian gerbils (WILD) caught in central Mongolia (F 1 , n = 16; F 2 , n = 17). LAB and WILD were examined in January. Testicular spermatozoa were counted, proportions of different cell types were analysed using DNA¯ow cytometry, and mitotic and meiotic activity was calculated from DNA histograms. Intratesticular testosterone concentrations were measured with an enzyme immunoassay. In the WILD, testicular activity was lower and varied more. The overall weight, the ef®ciency of spermatogenesis (sperm/g testis) and resulting total sperm per testis were signi®cantly less in offspring of wild gerbils. This corresponded with lower levels of haploid cells, total germ cell transformation of diploid cells to spermatids and meiotic transformation of spermatocytes to spermatids. The most profound difference was found in testicular testosterone concentration: the mean level was 405.7 41.2 ng/g testis in LAB vs 6.4 2.0 ng/g in WILD F 1 . All parameters changed in WILD F 2 generation compared with F 1 and diminished the differences with LAB. Differences between F 1 and F 2 were signi®cant for testis mass, testis/ body weight ratio, percentages of haploid cells and cells in G 2 /M phase, both germ cell transformations and testosterone concentration. The results suggest rapid, adaptive changes of male reproductive physiology in the early offspring generations from wild populations under laboratory breeding conditions. The breeding of Mongolian gerbils in the laboratory has in¯uenced the testicular function resulting in increased spermatogenic activity and highly stimulated testosterone production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.