In the framework of the German Indonesian Tsunami Early Warning System (GITEWS) the assessment of tsunami risk is an essential part of the overall activities. The scientific and technical approach for the tsunami risk assessment has been developed and the results are implemented in the national Indonesian Tsunami Warning Centre and are provided to the national and regional disaster management and spatial planning institutions in Indonesia. <br><br> The paper explains the underlying concepts and applied methods and shows some of the results achieved in the GITEWS project (Rudloff et al., 2009). The tsunami risk assessment has been performed at an overview scale at sub-national level covering the coastal areas of southern Sumatra, Java and Bali and also on a detailed scale in three pilot areas. The results are provided as thematic maps and GIS information layers for the national and regional planning institutions. From the analyses key parameters of tsunami risk are derived, which are integrated and stored in the decision support system of the national Indonesian Early Warning Centre. Moreover, technical descriptions and guidelines were elaborated to explain the developed approach, to allow future updates of the results and the further development of the methodologies, and to enable the local authorities to conduct tsunami risk assessment by using their own resources
Smoldering peat fires in Indonesia are responsible for large quantities of trace gas and particulate emissions. However, to date no satellite remote sensing technique has been demonstrated for the identification of smoldering peat fires. Fires have two distinct combustion phases: a high temperature flaming and low temperature smoldering phases. The flaming phase temperature is approximately twice that of the smoldering phase. This temperature differential results in a spectral displacement of the primary radiant emissions of the two combustion phases. It it is possible to exploit this spectral displacement using widely separated wavelength ranges. This paper examines active fire features found in short-wave infrared (SWIR) and long-wave infrared (LWIR) nighttime Landsat data collected on peatlands in Sumatra and Kalimantan. Landsat 8's SWIR bands are on the leading edge of flaming phase radiant emissions, with only minor contribution from the smoldering phase. Conversely, Landsat 8's LWIR bands are on the trailing edge of smoldering phase radiant emissions. After examining the LWIR fire features, we conclude that they are the result of smoldering phase combustion. This has been confirmed with field validation. Detection limits for smoldering peat fires in Landsat 8 is in the 40-90 m 2 range. These results could lead to improved management of peatland fires and emission modeling.
The normalized change index and split-based approach methods have been applied in this research to create the semiautomatic unsupervised change-detection areas affected by flood using multi-temporal Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) remotely sensed data. This research is focused to provide information related to the flood inundation event that occurred in March 2010, in Karawang, West Java, Indonesia. The objectives of this research are as follows:(1) to generate a flood inundation map as rapid mapping steps in disaster mitigation effort and (2) to identify and assess the environmental damage caused by flood inundation event in the research area. ALOS PALSAR remotely sensed data with the acquisition pre-flood (March 09, 2010) and post-flood (March 26, 2010) were used for mapping flood inundation event. Flood inundation map and land-use data are used for the identification and assessment of the environmental damage caused by flood inundation event, which is done with GIS environment tools. The flood inundation event is estimated to have an impact of 7,158 ha for settlements; 20,039 ha for paddy fields; 668 ha for plantations; 1,641 ha for farms; 198 ha for agricultural cultivations; 1,161 ha for shrubberies; 1,022 ha for industrials; and 1,019 ha for road areas. The total number of building damages is estimated to be around 16,350 units. In general, this method can be used to assist emergency response efforts, through an inventory of areas affected by floods. In addition, the use of this method can be applied and it is recommended for future research in different locations, which are consistent and reliable to detect areas affected by other disasters such as flash floods, landslide, tsunami, volcano eruptions, and forest fire.
This study presents the information on the dynamics of changes in land use/land cover (LULC) spatially and temporally related to the causes of flooding in the study area. The dynamics of LULC changes have been derived based on the classification of Landsat imagery for the period between 1990 and 2016. Terrain surface classification (TSC) was proposed as a micro-landform classification approach in this study to create flood hazard assessment and mapping that was produced based on the integration of TSC with a probability map for flood inundation, and flood depth information derived from field observation. TSC as the micro-landform classification approach was derived from SRTM30 DEM data. Multi-temporal Sentinel-1 data were used to construct a pattern of historical inundation or past flooding in the study area and also to produce the flood probability map. The results of the study indicate that the proposed flood hazard mapping (FHM) from the TSC as a micro-landform classification approach has the same pattern with the results of the integration of historical inundation or previous floods, as well as field investigations in the study area. This research will remain an important benchmark for planners, policymakers and researchers regarding spatial planning in the study area. In addition, the results can provide important input for sustainable land use plans and strategies for mitigating flood hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.