Summary
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by
Phytophthora infestans
, remains the most devastating disease of potato (
Solanum tuberosum
L.) with about 15%–30% annual yield loss in sub‐Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (
R
) genes from wild relatives [
RB
,
Rpi‐blb2
from
Solanum bulbocastanum
and
Rpi‐vnt1.1
from
S. venturii
] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three
R
genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3
R
‐gene stack from the potato varieties ‘Desiree’ and ‘Victoria’ grew normally without showing pathogen damage and without any fungicide spray, whereas their non‐transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long‐lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from ‘Desiree’ and ‘Victoria’ grown without fungicide to reflect small‐scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four‐fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers’ preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub‐Saharan Africa.
the Rpi-vnt1.1 gene was shown to be rapidly increased by two-fold and subsequently to have steady state expression for at least 5 days after the inoculation. The Rpi-vnt1.1 gene in addition to other R genes as a stack in farmers' preferred varieties will confer extreme resistance to late blight disease and rotations of plants with different R-gene-stack in time is likely to last longer than plants with single R gene.
An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-016-9976-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.