We investigate the ability of a relativistic Mean-Field theory to reproduce nuclear ground state properties by an exhaustive fit to experimental data. We find that the bulk properties of nuclei from 160 to 2~ can be adjusted very well. There remain problems with level density and fluctuations in the charge density similar as in fits using the conventional Skyrme Hartree-Fock model.
Within a relativistic mean-field theory (RMFT) experimental data on the single-particle spectra of lambda hypernuclei are well reproduced. It is shown that the coupling constants cannot be fixed unambiguously from the single-particle spectra. The stability and structure of multi-lambda hypernuclei is explored on the basis of the RMFT using the coupling constants as determined from the observed single lambda hypernuclear levels. It is predicted that multistrange nuclei exhibit an enhanced interaction radius, which further increases in the case of finite temperatures. We suggest that multi-lambda hypernuclei could be produced in high-energy heavy ions and observed in secondary noncharge-changing reactions. The equation of state of lambda matter and the possibility of pure lambda droplets are also discussed.
We study a relativistic model of the nucleus consisting of nucleons coupled to mesonic degrees of freedom via an effective Lagrangian whose parameters are determined by a fit to selected nuclear ground-state data. We find that the model allows a very good description of nuclear ground-state properties. Because of the relativistic nature of the modei, the spin properties are uniquely fixed. We discuss variations of the parametrization and of the data which suggest that the present fit has exhausted the limits of the mean-fieid approximation, and discuss extensions which go beyond the mean field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.