Whispering gallery modes (WGMs) were observed in 60 nm thin cubic AlN microdisk resonators containing a single layer of non-polar cubic GaN quantum dots. Freestanding microdisks were patterned by means of electron beam lithography and a two step reactive ion etching process. Micro-photoluminescence spectroscopy investigations were performed for optical characterization. We analyzed the mode spacing for disk diameters ranging from 2-4 lm. Numerical investigations using three dimensional finite difference time domain calculations were in good agreement with the experimental data. Whispering gallery modes of the radial orders 1 and 2 were identified by means of simulated mode field distributions. V
We demonstrate efficient room-temperature photoluminescence and spectral tuning of epitaxially grown ZnSe/CdSe quantum well structures almost over the whole visible spectrum (470-600 nm wavelength). The key element to achieve the observed high quantum efficiency and enormous tuning range was the implementation of a special strain engineering technique, which allows us to suppress substantial lattice relaxation of CdSe on ZnSe. Previous studies indicated that a CdSe coverage exceeding 3 ML on ZnSe results in the formation of extensive lattice defects and complete quenching of the photoluminescence at low and room temperature. In contrast, our approach of strain engineering enables the deposition of planar CdSe quantum wells with a thickness ranging from 1 to 6 ML with excellent optical properties. We attribute the observed experimental features to a controllable strain compensation effect that is present in an alternating system of tensile and compressively strained epitaxial layers and supported this model by calculations of the transition energies of the ZnSe/CdSe quantum wells. PACS number(s): 85.60.−q, 71.20.Mq, 78.55.−m, 78.67.−n 1098-0121/2015/91(3)/035409(8) 035409-1
Optical and electrical properties of highly nitrogen-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy Electron-cyclotron-resonance plasma etching of the ZnO layers grown by molecular-beam epitaxy Dry etching processes for bulk-single crystal zinc oxide ͑ZnO͒ and molecular beam epitaxy ͑MBE͒ grown ZnO have been investigated using inductively coupled plasma ͑ICP͒ of CH 4 and SiCl 4 based plasma chemistry. The CH 4 -based chemistry showed a higher etch rate than the SiCl 4 based chemistry, presumably due to the formation of highly volatile metal organic zinc compound. The influence of base pressure, radio frequency table power, and ICP power on etch rate was studied. Auger electron spectroscopy has been employed to examine the surface stoichiometry of etched ZnO using both plasma chemistries. Furthermore, with optimized process parameters, the effect of plasma etching on the optical properties of MBE grown ZnO film is studied. An enhancement of the band edge luminescence along with almost complete suppression of defect level luminescence in hydrogen-containing plasma treated ZnO film has been observed.
Strain-compensated CdSe/ZnSe/(Zn,Mg)Se quantum well structures that were grown on (In,Ga)As allow for efficient room-temperature photoluminescence and spectral tuning over the whole visible range. We fabricated microdisk cavities from these samples by making use of a challenging chemical structuring technique for selective and homogeneous removal of the (In,Ga)As sacrificial layer below the quantum structure. The observed whispering gallery modes in our microdisks are mainly visible up to photon energies of ~ 2.3 eV due to strong self-absorption. As extinction coefficients and effective refractive indices are dominated by the quantum well material CdSe, thick quantum wells (> 3 monolayer) are necessary to observe resonances in the corresponding quantum well emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.