[1] Ground-level enhancements (GLEs) are sudden, sharp, and short-lived increases in cosmic ray intensities registered by neutron monitors. These enhancements are known to take place during powerful solar eruptions. In the present investigation, the cosmic ray intensities registered by the Oulu neutron monitor have been studied for the period between January 1979 and July 2009. Over this span of time, increase rates of 32 GLEs have been deduced. In addition, we have studied characteristics of the 32 event-associated solar flares, coronal mass ejections (CMEs), and solar energetic particle (SEP) fluxes. We found that all of the 32 GLEs were associated with solar flares, CMEs, and SEP fluxes. Approximately 82% of the events were associated with X-class flares. Most of the flares that were associated with GLEs of increase rates >10% originated from the active regions located on the southwest hemisphere of the Sun. The average speed (1726.17 km/s) of GLE-associated CMEs was much faster than the average speed (423.39 km/s) of non-GLE-associated CMEs. It also became evident that ∼67% GLEs were associated with very fast (>1500 km/s) CMEs. Although a GLE event is often associated with a fast CME, this alone does not necessarily cause the enhancement. Solar flares with strong optical signatures may sometimes cause GLE. High SEP fluxes often seem to be responsible for causing GLEs as the correlation with SEP fluxes implies.
The coronal index (CI) of solar activity is the irradiance of the Sun as a star in the coronal green line (Fe XIV, 530.3 nm or 5303 Å). It is derived from ground‐based observations of the green corona made by the network of coronal stations (currently Kislovodsk, Lomnický Štít, Norikura, and Sacramento Peak). The CI was introduced by Rybanský (1975) to facilitate comparison of ground‐based green line measurements with satellite‐based extreme ultraviolet and soft X‐ray observations. The CI since 1965 is based on the Lomnický Štít photometric scale; the CI was extended to earlier years by Rybanský et al. (1994) based on cross‐calibrations of Lomnický Štít data with measurements made at Pic du Midi and Arosa. The resultant 1939–1992 CI had the interesting property that its value at the peak of the 11‐year cycle increased more or less monotonically from cycle 18 through cycle 22 even though the peak sunspot number of cycle 20 exhibited a significant local minimum between that of cycles 19 and 21. Rušin and Rybanský (2002) recently showed that the green line intensity and photospheric magnetic field strength were highly correlated from 1976 to 1999. Since the photospheric magnetic field strength is highly correlated with sunspot number, the lack of close correspondence between the sunspot number and the CI from 1939 to 2002 is puzzling. Here we show that the CI and sunspot number are highly correlated only after 1965, calling the previously‐computed coronal index for earlier years (1939–1965) into question. We can use the correlation between the CI and sunspot number (also the 2800 MHz radio flux and the cosmic ray intensity) to recompute daily values of the CI for years before 1966. In fact, this method can be used to obtain CI values as far back as we have reliable sunspot observations (∼1850). The net result of this exercise is a CI that closely tracks the sunspot number at all times. We can use the sunspot‐CI relationship (for 1966–2002) to identify which coronal stations can be used as a basis for the homogeneous coronal data set (HDS) before 1966. Thus we adopt the photometric scale of the following observatories for the indicated times: Norikura (1951–1954; the Norikura photometric scale was also used from 1939 to 1954); Pic du Midi (1955–1959); Kislovodsk (1960–1965). Finally, we revised the post‐1965 HDS and made several small corrections and now include data from Kislovodsk, Norikura, and Sacramento Peak to fill gaps at Lomnický Štít.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.