α-graphdiyne is a novel predicted Dirac cone material, which is similar to graphene. But the absence of a band gap significantly limits its practical applications. In order to extend this limitation, an opening of energy gap is needed. To this end, we resort to the nanoribbon structure of α-graphdiyne. This is a conventional proposal to open up the energy gaps in nanomaterials. The results show that both the armchair and the zigzag α-graphdiyne nanoribbons do generate energy gaps, which are width-dependent. In addition, the underlying mechanism of this opening is explored. The former is ascribed to the combination of quantum confinement and edges' effect, while the latter arises from the edge magnetic ordering. These novel nanoribbons with opening energy gaps would be potentially used in electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.