Abstract. Mechanical joints, particularly fasteners such as bolted joints have a complex non-linear behaviour. The non-linearity might emerge from the material, geometry or by the contacts in the joints. However, damage to a structure can be happened either their connections or the material of components. The effect of damage can change the dynamic properties of the structure such as natural frequencies and mode shapes and structural performance and can cause premature failure to structure. This paper presents a damage detection method using a vibration based damage detection method based on the frequency response function (FRF) data. A combination of numerical model and physical bolted jointed structure of damaged and undamaged structure will be investigated. The validation is employed to detect the presence of damage in the structure based on the frequency response function (FRF) data from the parameter values used in the benchmark model and damaged model. The comparisons of the undamaged and damaged structure of the FRF have revealed the damaged structure was shifted from the undamaged structure. The effect of the FRF between undamaged and damaged structure is clearly affected by the reduction of stiffness for the damaged structure.
Abstract. Every structure that assembled with the joints has a significant effect on the dynamic behaviour of the structure. Therefore, the overall dynamic behaviour of the jointed structure highly relies on these joints. Finite element method (FEM) is commonly used to model an element connector for the jointed structure due to its because every jointed structure has its owns joint properties. The aims of this research are to identify the potential element connectors that are available in commercial finite element analysis package in order to represent the joints for spot welds and adhesive joints. The reliability of potential connector elements are quantified by comparing the predicted result calculated from commercial finite element analysis package with the experimental result that obtained from the LMS Scadas. The model of element connectors have been constructed based on three types of the case studies. The comparison reveals that the combination of Type 2 (ACM2) and Type 3 (CWELD) have shown a better capability to represent the joints of the complex jointed structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.