We propose a four-level experimental N-type atomic configuration to observe the propagation of a light pulse in a spinning dispersive medium. In this model a fast propagating light pulse is observed in which the polarization states of the light and their transmitted images are rotated in the opposite direction to the spinning medium. We investigate the effects of Doppler broadening and Kerr nonlinearity on fast light propagation in a spinning medium. Doppler broadening and Kerr nonlinearity strongly influence the rotation of the polarization states of the light and images of fast light in a spinning medium. A pulse of group velocity −c/2000.5 ms −1 is enhanced to −c/80000 ms −1 due to the the Kerr effect and a significant increase is observed in the rotation of the polarization states of the light and images. At a specific parameter, a 25% fraction change is observed due to the Kerr effect. These results provide different rotation states for image coding.
Conductivity-dependent surface plasmon polariton (SPP) propagation is investigated at the interface between a metal and a tripod-type atomic medium. Our theoretical investigations show that the SPP propagation depends on the conductivity of the metallic medium and the coherent driving fields applied in the atomic medium up to a saturation limit. Further, the SPPs drag and rotate with collective spinning of the proposed structure. The rotation is modified with the spin angular velocity of the whole structure. A maximum rotation of ±4 microradians is observed. Our results may find applications in plasmonster technology.
We demonstrate the possibility of creating a time gap in the slow light based on spectral hole burning in a fourlevel Doppler broadened sodium atomic system. A time gap is also observed between the slow and the fast light in the hole burning region and near the burnt hole region, respectively. A cloaking time gap is attained in microseconds and no distortion is observed in the transmitted pulse. The width of the time gap is observed to vary with the inverse Doppler effect in this system. Our results may provide a way to create multiple time gaps for a temporal cloak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.