Context. The interactions between the Small and Large Magellanic Clouds (SMC and LMC) created the Magellanic Bridge; a stream of gas and stars pulled out of the SMC towards the LMC about 150 Myr ago. The tidal counterpart of this structure, which should include a trailing arm, has been predicted by models but no compelling observational evidence has confirmed the Counter-Bridge so far. Aims. The main goal of this work is to find the stellar counterpart of the Magellanic Bridge and Counter-Bridge. We use star clusters in the SMC outskirts as they provide a 6D phase-space vector, age, and metallicity which help characterise the outskirts of the SMC. Methods. Distances, ages, and photometric metallicities were derived from fitting isochrones to the colour-magnitude diagrams from the VISCACHA survey. Radial velocities and spectroscopic metallicities were derived from the spectroscopic follow-up using GMOS in the CaII triplet region. Results. Among the seven clusters analysed in this work, five belong to the Magellanic Bridge, one belongs to the Counter-Bridge, and the other belongs to the transition region. Conclusions. The existence of the tidal counterpart of the Magellanic Bridge is evidenced by star clusters. The stellar component of the Magellanic Bridge and Counter-Bridge are confirmed in the SMC outskirts. These results are an important constraint for models that seek to reconstruct the history of the orbit and interactions between the LMC and SMC as well as constrain their future interaction including with the Milky Way.
We report the discovery of 34 new open clusters and candidates as a result of a systematic search carried out in 200 adjacent fields of 1 × 1 deg2 area projected towards the Galactic bulge, using Gaia DR2 data. The objects were identified and characterized by a joint analysis of their photometric, kinematic and spatial distribution, which has been consistently used and proved to be effective in our previous works. The discoveries were validated by cross-referencing the objects position and astrometric parameters with the available literature. Besides their coordinates and astrometric parameters, we also provide sizes, ages, distances and reddening for the discovered objects. In particular, 32 clusters are closer than 2 kpc from the Sun, which represents an increment of nearly $39\%$ of objects with astrophysical parameters determined in the nearby inner disk. Although these objects fill an important gap in the open clusters distribution along the Sagittarius arm, this arm, traced by known clusters, appears to be interrupted, which may be an artifact due to the incompleteness of the cluster census.
We report the serendipitous discovery of three new open clusters, named UFMG 1, UFMG 2 and UFMG 3 in the field of the intermediate-age cluster NGC 5999, by using Gaia DR2 data. A colour-magnitude filter tailored for a proper selection of mainsequence stars and red clump giants turned evident the presence of NGC 5999 and these three new stellar groups in proper motion space. Their structural parameters were derived from King-profile fittings over their projected stellar distributions and isochrone fits were performed on the clusters cleaned colour-magnitude diagrams built with Gaia bands to derive their astrophysical parameters. The clusters projected sky motion were calculated for each target using our members selection. Distances to the clusters were inferred from stellar parallaxes through a bayesian model, showing that they are marginally consistent with their isochronal distances, considering the random and systematic uncertainties involved. The new clusters are located in the nearby Sagittarius arm (d ∼ 1.5 kpc) with NGC 5999 at the background (d ∼ 1.8 kpc). They contain at least a few hundred stars of nearly solar metallicity and have ages between 100 and 1400 Myr.
In this study, we characterized 16 objects previously classified as faint or low contrast Galactic open clusters (OCs). We employed parameters associated to the OCs dynamical evolution: core (r c ), tidal (r t ) and half-mass (r hm ) radii, age and crossing time (t cr ). Relations among these parameters were exploited to draw some evolutionary connections. We also included 11 OCs with previous characterizations to provide wider coverage of the parameters space. The investigated sample spans a considerable range in age (log (t yr −1 ) ∼7.0−9.7) and Galactocentric distance (R G ∼ 6 − 11 kpc). Most of them present solar metallicity. We employed GAIA DR2 astrometry and photometry and selected member stars through a decontamination algorithm which explores the 3D astrometric space (µ α , µ δ , ) to assign membership likelihoods. Previous studies of most of these objects were based mostly on photometric information. All investigated OCs were proved to be real stellar concentrations and relations among their parameters indicate a general disruption scenario in which OCs tend to be more concentrated as they evolve. Internal interactions sucessively drive OCs to develop more dynamically relaxed structures and make them less subject to mass loss due to tidal effects. Tidal radius tends to increase with R G in accordance with the strength of the Galactic tidal field. Besides, the correlation between the r c and the dynamical ratio τ dyn = age/t cr suggests two distinct evolutionary sequences, which may be consequence of different initial formation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.