Species differences in the biotransformation of the antiemetic tropisetron, a potent 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist, were evident in liver slice incubates of human, rat and dog, and reflected the species differences observed in vivo with respect to the relative importance of individual pathways. The dominant biotransformation pathway of tropisetron (10 microM) in human liver slices was formation of 6-hydroxy-tropisetron, whereas in rat liver slices it was 5-hydroxy-tropisetron, and in dog liver slices N-oxide formation. Initial rates of tropisetron metabolite formation in the liver slices (8 mm in diameter, 200 +/- 25 microns thickness) of human (83 +/- 61 pmol/h/mg slice protein), rat (413 +/- 98 pmol/h/mg slice protein) and dog (426 +/- 38 pmol/h/mg slice protein) would predict less of a first-pass effect in humans compared to the rat or the dog. For human and rat, the prediction matched well with the species ranking of tropisetron bioavailability; however, for dog the in vitro data overestimated the apparent first-pass effect. The jejunum is not expected to contribute to the first-pass effect in humans, since human jejunum microsomes did not metabolize tropisetron. The major organ of excretion for tropisetron and its metabolites is the kidney, but the contribution of the kidney to the overall metabolism of tropisetron would be small. Species independent N-oxide formation (2-12 pmol/h/mg slice protein) was the major pathway in human, rat and dog kidney slices, and was comparable to N-oxide formation in the rat and human liver slices but was 1/10 the rate in dog liver slices. This study has demonstrated that the liver is the primary site of tropisetron biotransformation, and the usefulness of organ slices to characterize cross species differences in the dominant biotransformation pathways.
1. Pentachlorophenyl methyl sulphoxide and pentachlorophenyl methyl sulphone were found to be substrates for microsomal and cytosolic glutathione-S-transferase of rabbit, monkey, chicken and human liver, covalently immobilized on beaded sepharose. 2. Protein was immobilized with greater than 95% transferase activity, measured by dinitrochlorobenzene. Immobilized rabbit liver microsomal transferase activity was more stable than immobilized cytosolic activity. 3. The sulphoxide moiety was displayed by glutathione in the presence of chicken liver microsomal protein. The sulphone moiety was displayed by glutathione in the formation of a diglutathione under catalysis by rhesus monkey liver cytosolic and microsomal protein. 4. Chlorine was displaced by transferases from all species to form regioisomeric monoglutathiones. 5. Qualitative and quantitative differences were observed in product distributions between species and between microsomal and cytosolic protein.
1. Cleavage of the glucopyranosyl moiety of the somatostatin analogue SDZ CO 611 results in the formation of the major metabolite, SDZ CO 610, in liver and kidney slices of rat, dog and man, as well as in liver S9 and cytosol of rat and man. 2. The rates of SDZ CO 610 formation (nmol/h/mg slice protein) for all three species were determined in liver slices for 24 h and the relative order was: rat (0.12) > dog (0.096) = man (0.095). The rates of SDZ CO 610 formation (nmol/h/mg slice protein) for all three species in kidney were determined, and the relative order was: rat (0.29) > dog (0.16) > man (0.10). 3. SDZ CO 610 was rapidly formed by rat gut contents in the absence of NADPH, possibly by disaccharide-splitting enzymes. 4. Biotransformation of SDZ CO 611 to SDZ CO 610 in human and rat liver S9 and cytosol was similar to that found in liver slices cultures indicating that cleavage of the glucopyranosyl moiety of SDZ CO 611 could occur in the presence and in the absence of cytochrome P450, possibly by glucosidases in liver cytosol. 5. Rat intestinal homogenate also formed SDZ CO 610 but metabolism was dependent upon NADPH, suggestive of a cytochrome P450-dependent reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.