This paper describes character based elastic matching using local features for recognizing online handwritten data. Dynamic Time Warping (DTW) has been used with four different feature sets: x-y features, Shape Context (SC) and Tangent Angle (TA) features, Generalized Shape Context feature (GSC) and the fourth set containing x-y, normalized first and second derivatives and curvature features. Nearest neighborhood classifier with DTW distance was used as the classifier. In comparison, the SC and TA feature set was found to be the slowest and the fourth set was best among all in the recognition rate. The results have been compiled for the online handwritten Tamil and Telugu data. On Telugu data we obtained an accuracy of 90.6% with a speed of 0.166 symbols/sec. To increase the speed we have proposed a 2-stage recognition scheme using which we obtained accuracy of 89.77% but with a speed of 3.977 symbols/sec.
<p class="0abstract"><span lang="EN-US">One of the ways to reduce oral cancer mortality rate is diagnosing oral lesions at initial stages to classify them as precancerous or normal lesions. During routine oral examination, oral lesions are normally screened manually. In a low resource setting area where there is lack of medical facilities and also medical expertise, an automated mechanism for oral cancer screening is required. The present work is an attempt towards developing an automated system for diagnosing oral lesions using deep learning techniques. An ensemble deep learning model that combines the benefits of Resnet-50 and VGG-16 has been developed. This model has been trained with an augmented dataset of oral lesion images. The model outperforms other popularly used deep learning models in performing the classification of oral images. An accuracy of 96.2%, 98.14% sensitivity and 94.23% specificity was achieved with the ensemble deep learning model.</span></p>
This work presents a new approach for classifying masses in breast ultrasound images. Detection and classification of masses in ultrasound images still remains a challenge because most of the ultrasound images contain speckle noise and fuzzy boundaries. Ultrasound (US) is an important adjunct to mammography in breast cancer detection as it increases the rate of detection in dense breasts. Ultrasound also does dynamic analysis of moving structures in breast thus it is used to analyze the functional behavior of breast. In the proposed method, ultrasound images are preprocessed using Gaussian smoothing to remove additive noise and anisotropic diffusion filters to remove multiplicative noise (speckle noise). Active contour method has been used to extract a closed contour of filtered image which is the boundary of the spiculated mass. Spiculations which make breast mass unstructured or irregular are marked by measuring the angle of curvature of each pixel at the boundary of mass. To classify the breast mass as malignant or benign we have used: the structure of mass in accordance with spiculations, elliptical shape of the mass and acoustic shadowing feature which is an important functional feature. We have used receiver operating characteristic curve (ROC) to evaluate the performance. We have validated the proposed algorithm on 100 sub images(40 spiculated and 60 non spiculated) and results shows 92.7% of sensitivity with 0.88 Area Under Curve. Proposed techniques were compared and contrasted with the existing methods and result demonstrates that proposed algorithm has successfully detected and classified mass ROI candidates in breast ultrasound images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.