Tailoring the magnetic features of cobalt ferrite nanoparticles (NPs) has been achieved via varying the doping percent of nickel. The nickel-substituted cobalt ferrite NPs NixCo1-xFe2O4 (0 ≤ x ≤ 1.0) are constructed by the eco-friendly coprecipitation method. The formation of a nearly cubic single-phase spinel frame is assured by the analysis of XRD data. Moreover, the Rietveld analysis based on structure refinement is implemented in this study to precisely determine the microstructural parameters and estimate the cation distribution. A linear drop-in lattice constant with boosting the Ni2+ ion percent is acclaimed, in regard to Vegard's law. The creation of nanoparticles that are nearly spherical along with polyhedron shape and have a diameter of (about 39–45 nm) has been affirmed by utilizing high-resolution transmission electron microscopy (HRTEM). Also, the crystalline essence of the formed nanoparticles has been declared by selective area electron diffraction (SAED). The magnetic properties have been collected from the hysteresis loops and FC–ZFC curves. These curves have been tweaked as a function of low-temperature from 5 K up to 300 K and in the existence of an external magnetic field (± 70KOe). The magnetization curves revealed that CoFe2O4 (NPs) correspond to the hard ferrimagnetic material, whereas NiFe2O4 (NPs) matched well with identical soft ferrimagnetic material. Also, the divergence betwixt the theoretical and experimental values of the magnetic moment is well explained by the model of "Random Canting of Spins, (RCS)". In addition, a remarkable reduction is found in the recorded values of magnetic parameters by increasing Ni2+ content and decreasing the temperature towards 5 K. These findings imply the potential of Ni2+ ions doping in enhancing the magnetic properties of cobalt ferrite for vast magnetic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.