Polyester based composites were fabricated and characterized for their tensile, morphological and dynamic mechanical properties such as storage and loss moduli as a function of temperature. The morphological attributes were characterized by scanning electron microscopy (SEM) and COSLAB microscope. The morphological investigations have revealed a uniformly distributed polyester matrix of the composites. Dynamic mechanical analysis (DMA) revealed an enhancement in the energy dissipation ability of the composite 4GF and an average storage modulus of the composite 3GF/1FN relative to the soft polyester phase. The tensile modulus and tensile strength increased up to 0.5 %, accompanied by while the strain at break remained largely unaffected. Fractured surface morphology indicates that the failure mode of the composites undergoes a switch-over from matrix-controlled shear deformation to the filler-controlled loading of the composites for specific applications. Hence, the utilization of discarded fishnet incorporated composites mitigates the problem of waste disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.