We recently reported that elevations in the intracellular Ca2+ concentration ([Ca2+]i) enhance low-voltage-activated, T-type, Ca2+ channel activity via Ca2+/calmodulin-dependent protein kinase II (CaMKII). Here, we document CaMKII activity in bovine adrenal glomerulosa (AG) cells and assess the importance of CaMKII in depolarization-induced Ca2+ signaling. AG cell extracts exhibited kinase activity toward a CaMKII-selective peptide substrate that was dependent on both Ca2+ [half-maximal concentration for Ca2+ activation (K0.5) = 1.5 microM] and calmodulin (K0.5 = 46 nM) and was sensitive to a calmodulin antagonist and a CaMKII peptide inhibitor. On cell treatment with elevated extracellular potassium (10-60 mM) or angiotensin II, Ca(2+)-independent CaMKII activity increased to 133-205% of basal activity. Ca(2+)-independent kinase activity in agonist-stimulated extracts was inhibited by the CaMKII inhibitor peptide, 1(-)[N,O-bis(1,5- isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a cell-permeable inhibitor of CaMKII, reduced the agonist-induced stimulation of Ca(2+)-independent CaMKII activity. KN-62 also diminished depolarization-induced increases in [Ca2+]i without affecting the membrane potential. These observations suggest that CaMKII is activated in situ by aldosterone secretagogues and augments Ca2+ signaling through voltage-gated Ca2+ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.