Differences in the oxidative stability of milk from cows fed grass-clover silage or hay were examined in relation to fatty acid composition and contents of antioxidants and copper in the milk. The oxidation processes were induced by exposing the milk to fluorescent light. Protein oxidation was measured as an accumulation of dityrosine, whereas lipid oxidation was measured as an accumulation of lipid hydroperoxides as the primary oxidation product, and as the secondary oxidation products, pentanal, hexanal, and heptanal. No differences were found in the protein oxidation of the 2 types of milk measured as accumulation of dityrosine, but there was an increased accumulation of lipid hydroperoxides and hexanal in milk from cows fed grass-clover silage, compared with milk from cows fed hay. The higher degree of lipid oxidation in milk from cows fed grass-clover silage could not be explained from the concentration of alpha-tocopherol, carotenoids, uric acid, and copper in the milk. However, it was thought to be highly influenced by the significantly higher concentration of linolenic acid present in milk from cows fed grass-clover silage. A larger part of alpha-tocopherol and beta-carotene was transferred from the feed to the milk when cows were fed grass-clover silage than when cows were fed hay as roughage. The significantly higher concentration of polyunsaturated fatty acids in milk from cows fed grass-clover silage may be important for the better transfer of alpha-tocopherol from the feed to the milk. Other circumstances, as the different conditions in the rumen may also play a role, due to the different types of roughages and their digestibility, or be related to the mechanisms during milk production for the higher yielding cows fed grass-clover silage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.