We investigate analytically the effects of energetic particles (EPs) on the instability of the density-gradient-driven collisionless trapped electron mode (CTEM) through linear gyrokinetic theory and bounce kinetic theory in tokamak plasmas. The effects of EPs, including fusion-born alpha particles and neutral-beam-injection-driven beam ions, on the CTEM instability are compared for the dynamic model with slowing-down (SD) and equivalent Maxwellian (EM) equilibrium EP distribution functions and dilution model. It is found that the density-gradient-driven CTEM instability in the long wavelength regime can be further destabilized by EPs mainly due to the downshift in the real frequency of the mode by dilution effects. This is attributed to more resonant electrons around the smaller phase velocity of the drift wave and the consequent stronger excitation of CTEM instability. The growth rate is slightly higher for the dilution model as compared to that for the dynamic model since the Landau damping effects of EPs are neglected in the dilution model. Moreover, there is no significant difference in the growth rate between the cases of SD and EM equilibrium EP distribution functions, except for the case of alpha particles and with relatively higher electron temperature.
The effects of alpha (α) particles on the transport of helium ash driven by collisionless trapped electron mode (CTEM) turbulence are analytically studied using quasi-linear theory in tokamak deuterium (D) and tritium (T) plasmas. Under the parameters used in this work, the transport of helium ash is mainly determined by the diffusion due to very weak convection. It is found that the ratio between helium ash diffusivity and effective electron thermal conductivity (D_He/χ_eff) driven by CTEM turbulence, which is a proper normalized parameter for quantifying the efficiency of helium ash removal, is smaller than unity. This indicates the less efficient removal of helium ash through CTEM turbulence as compared with ion temperature gradient (ITG) turbulence in [Angioni, et al, 2009 Nucl. Fusion, 49 055013]. However, the efficiency of helium ash removal is increased 55% by the presence of 3% α particles with their density gradient being twice that of electrons, and this enhancement can be further strengthened by steeper profile of α particles. This is mainly because the enhancement of helium ash diffusivity by α particles is stronger than that of the effective electron thermal conductivity. Moreover, the higher fraction of T ions, higher temperature ratio between electrons and thermal ions as well as flatter electron density profile, the stronger enhancement of D_He/χ_eff, and α particles further strengthen the favorable effects of these parameters on the removal of helium ash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.