An efficient technique for calculating the scattering from curved metasurfaces using the extinction theorem in conjunction with the Floquet and Fourier series expansions is presented. Here, we treat the two-dimensional metasurfaces that have transversal polarizabilities with no variation along the y-axis. The boundary conditions at the metasurface are given by the generalized sheet transition conditions (GSTCs) whose susceptibilities are given in an arbitrary local coordinate system. First, we use the extinction theorem to provide integral equations of the scattering problem. The integral equations involve the Green's functions, tangential electric and magnetic fields and their normal derivatives in regions above and below the metasurface. Then, we employ the Floquet theorem that gives us the analytical periodic Green's functions of each region. Next, we employ the Fourier theorem to expand the tangential fields in terms of unknown Fourier coefficients. The GSTCs and the integral equations provide equations to be solved for the unknowns. The method can calculate scattering from both periodic and non-periodic metasurfaces. The technique is used to analyse different applied problems such as carpet cloaking, illusion, and radar echo width reduction. The method is fast and accurate and can efficiently treat metasurfaces with electrically large curved geometries with dimensions as large as 120 times the wavelength.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.