The influence of the relative humidity on the domain growth during local switching by a conductive tip of a scanning probe microscope has been studied in Rb:KTP single crystals. The abnormal formation of the elongated hexagonal domains during the local switching in an axial-symmetric field has been attributed to the anisotropy of the domain wall velocity. The increase and subsequent decrease in a hexagonal domain aspect ratio as a function of the pulse duration for high humidity have been attributed to the influence of the high-resistivity water layer. We assume that the domain elongation by the fast walls is limited by the water layer representing the series resistance, which depends on the wall position, while the domain widening by the slow walls is limited by their mobility. The computer simulation of the spatial distribution of the electric field has demonstrated that the appearance of a water meniscus decreases the field close to the tip and increases it far from the tip. This result has allowed explaining the published alternative effects of humidity on the domain size: (1) decrease in size for small domains and (2) increase in size for large ones. The obtained results highlight the necessity of humidity control for domain engineering.
The understanding of self-organization processes at the micro- and nanoscale is of fundamental interest and is important to meet the great challenges in further miniaturization of electronic devices to the nanoscale. Here, we report self-organized quasi-regular nanodomain structure formation on the nonpolar cut of a ferroelectric lithium niobate single crystal. These structures were formed along the trajectory of grounded scanning probe microscope tip approaching or moving away from the freshly switched region. Detailed analysis of the formed structures revealed internal organization by the length of the needle-like domains, which ranged from uniform to quasi-periodic and even chaotic modes as a function of distance from the switched region. Comprehensive investigations and numerical simulations allowed to attribute explored phenomena to charge injection during the field application and further switching under the action of electric field induced by injected charges near the tip. Self-organization and quasi-periodicity were explained by the effective screening and long-range electrostatic interaction between the individual needle-like domains.
The ultrafast interaction of tightly focused femtosecond laser pulses with bulk dielectric media in direct laser writing (inscription) regimes is known to proceed via complex multi-scale light, plasma and material modification nanopatterns, which are challenging for exploration owing to their mesoscopic, transient and buried character. In this study, we report on the first experimental demonstration, analysis and modeling of hierarchical multi-period coupled longitudinal and transverse nanogratings in bulk lithium niobate inscribed in the focal region by 1030 nm, 300 fs laser pulses in the recently proposed sub-filamentary laser inscription regime. The longitudinal Bragg-like topography nanogratings, possessing the laser-intensity-dependent periods ≈ 400 nm, consist of transverse birefringent nanogratings, which are perpendicular to the laser polarization and exhibit much smaller periods ≈ 160 nm. Our analysis and modeling support the photonic origin of the longitudinal nanogratings, appearing as prompt electromagnetic and corresponding ionization standing waves in the pre-focal region due to interference of the incident and plasma-reflected laser pulse parts. The transverse nanogratings could be assigned to the nanoscale material modification by interfacial plasmons, excited and interfered in the resulting longitudinal array of the plasma sheets in the bulk dielectric material. Our experimental findings provide strong support for our previously proposed mechanism of such hierarchical laser nanopatterning in bulk dielectrics, giving important insights into its crucial parameters and opening the way for directional harnessing of this technology.
Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe and confocal second-harmonic generation microscopy methods. The nanoscale material sub-structure in the microtracks was visualized in the sample cross-sections by atomic force microscopy (AFM), appearing weakly birefringent in polarimetric microscope images. The piezoresponce force microscopy (PFM) revealed sub-100 nm ferroelectric domains formed in the vicinity of the embedded microtrack seeds, indicating a promising opportunity to arrange nanodomains in the bulk ferroelectric crystal in on-demand positions. These findings open a new modality in direct laser writing technology, which is related to nanoscale writing of ferroelectric nanodomains and prospective three-dimensional micro-electrooptical and nanophotonic devices in nonlinear-optical ferroelectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.