This paper presents an analysis of drag reduction by buoyancy destruction in sediment-laden open channel flow. We start from the log-linear profile proposed by Barenblatt (Prikladnaja Matematika i Mekhanika, 17:261-274, 1953), extended with a second length scale to account for free surface effects. Upon analytical integration over the water depth, an expression for sediment-induced drag reduction is found in terms of an effective Chézy number, water depth, bulk Richardson number, and Rouse number. This relation contains one empirical/experimental coefficient, which was obtained from a large series of numerical experiments with a 1DV POINT MODEL. Upon calibration of this model against field and laboratory observations, we tuned the turbulent Prandtl-Schmidt number and found an optimal value of σ T =2, consistent to observations by Cellino and Graf (ASCE, J Hydraulic Engineering, 125:456-462, 1999). All numerical results could be correlated with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.